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Abstract

The algebraic classification of Lie superalgebras basedlpmhose odd module igl, itself
under the adjoint representation, together with the existence and uniqueness theorem for ODE’s in
supermanifolds, are hereby used as in Lie’s theory to produce nonisomorphic Lie supergroups, all
of which are supported over the same underlying Lie group,@hd whose Lie superalgebras of
left-invariant supervector fields are isomorphic to those given by the algebraic classification. Their
compact real forms are also studied so as to produce nonisomorphic Lie supergroups supported over
the unitary groug/,, and their corresponding maximal tori are described.
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1. Introduction

The main purpose of this work is to describe the Lie supergroup structure of those real
and complex Lie supergroups having £&4s their underlying Lie group and having a Lie
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superalgebra of the forgn= go ® g1, with go = gl> = g1, where the action of the evefp

into the oddyl; is given by the adjoint representation (for the basic definitions and main re-
sults on Lie superalgebras we follow the standard referefi@ds9). It has been proved in

[8] that there are 10 (resp., 8) different isomorphism classes of real (resp., complex) Lie su-
peralgebras satisfying these constraints, and it is through each one of them that the different
Lie supergroup structures over @are obtained. In particular, 10 different Lie supergroups
based ovel/, are obtained under analogous constraints for their Lie superalgebras.

One physical motivation for understanding precisely these Lie supergroup structures
comes from the fact that spacetime is conveniently identified — locally, at least — with the
Lie algebra of the unitary group’,. Therefore,U, has naturally associated to it, 10 dif-
ferent possibilities for building up (4})-dimensional models for superspacetimes. Another
example of theoretical interest is the Lie superalgebra described by Witf&&]irwhich
can be embedded into one of the nontrivial4dimensional superspacetime models. The
associated supergroups will therefore act on their corresponding Lie superalgebras by su-
persymmetry transformations; thus, under concrete realizations of these Lie supergroups,
new light is shed into such transformations.

Now, the problem of obtaining explicitly a Lie supergroup structure over a given Lie
groupGo fromits Lie superalgebrga = go @ g1, go = Lie(Go), is subtle. One way of doing
it is through an algebraic approach using Hopf algebras and smashed producfd]as in
Results obtained this way, however, are not particularly illuminating nor appealing in specific
examples, and physical applications call for a somewhat easier to handle machinery and
closer to what one is used to from Lie's theory; namely, giving first a faithful representation
of the Lie algebra into the Lie algebra of vector fields on some manifold, and obtaining
the local coordinate version of the group multiplication law through composition of their
integral flows depending on the integration parameters. As far as we know, no detailed
and self-consistent account has been given from first principles on how to obtain a Lie
supergroup structure in this way.

Now, the main tool in obtaining a Lie grougg out of its Lie algebragg in C*° geometry
is the existence and uniqueness theorem for ODE’s. The problem of putting Lie’s theory to
work in supermanifolds is that the important results on integral flows of supervector fields
and possible supergroup actions defined by them are not just straightforward extensions of
their counterparts in smooth manifolds. In fact, it is taken for granted that the integral flow
of a smooth vector field on a smooth manifold defines a local acti®wafiereas a similar
assertion for supermanifolds is much more subtle and elaboratg{3ee

Besides, we have chosen to follow the approach we have just described, not only to show
that Lie’s theory works via integral flows etc., but because the realizations of the supergroups
and their actions bring us back to a conceptually simpler way of thinking of the supergroups
based on Gg; namely, as ‘spaces whose elements are’ 2 matrices satisfying some
invertibility condition and having a ‘multiplication law’ that gives them a specific group
structure. In more detail, we aim to describe the multiplication law in terms of pairs of
matrices ¢, y) havingg € GL; (this is the invertibility condition), angr a 2 x 2 matrix
with entries in the spac&( E) of sections of the Gi-homogeneous vector bundie— GL»
with typical fibergl,, associated to the adjoint representation Ad » Gk GL(gl2); in other
words, we may writer € glo ® S(E). Now, our findings show that the multiplication law of
the various supergroups we study here, can be given in terms of these pairs via an expression
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of the form:

@.7) (& v)=@Eeld+ )y +AdgH + ), (1.1)

whereyg € glo ® S(A’E @ A%E @ A%E), y1 € glo @ S(NLE @ ASE), andAE = @ AF E
is the exterior algebra bundle @&; the adjoint action is extended froMito AE in its
algebraically natural manner. It is precisely the functional dependengg ahdy; from
the entriesg’, y’) and g, y) what gives the group structure, and what we aim to determine
for the various Lie supergroups considered in this work (see B®). and (3.8)together
with Theorem 4.Xor supergroups supported over &lsee also Eqg5.1) and (5.2for
supergroups supported ovEs, and(6.1) for their maximal tori).

To give a more precise idea of what is involved in the opening paragraph of this intro-
duction, let us first consider the Lie algelpia generated, as usual, by thex2-matrices

10 1 0 01 0 0
= , H= , E= andF = ,
(o 8)- =0 ) #= (5 o) wor= (3 )

which we will denote here by, x1, x2 andxs, respectively. In considering the Lie su-
peralgebragly, @ gly we think of theodd generators as P(x;) (i =0, 1, 2, 3); that is, as
elements in the second direct summaytgl which are images undét of the even (first
direct summandjenerators x;, and P(X) stands foiX itself with its Z,-parity reversed. We
then extend the map linearly in such a way thaP o P = Id (see[8]). The fact that the
action of the evegl, in the oddgl; is given by the adjoint representation is written in terms
of P (with a slight abuse of notation) a3([x;, x;]) = [x;, P(x;)] = —[P(x;), x;], where

[-, -] stands for the Lie algebra bracket. To complete the Lie superalgebra description, we
must give a symmetric bilinear map : gl x glo — glo representing the bracket of any
pair of odd elements. Writing(x;, x;) for the Lie superalgebra bracket of the two odd
elementsP(x;), and P(x;), it is a straightforward matter to check that the Jacobi identities
for the Lie superalgebra imply that (sg3):

&(xo, x0) = Axo, D(xo, X1) = px1, d(x1, x1) = 2vxo,
D(x0, x2) = px2, ®(x1,x2) =0, P(x2, x2) =0,
D(x0, X3) = uxs, ®D(x1,x3) =0, @D(x2, x3) = vxp, @D(x3,x3) =0

for arbitrary parameters, 1 andv in the ground field. A different symmetric bilinear map
@' : gly x glo — glo wouldyield adifferent set of parameters; 3y’ andv’, respectively.
Let us denote byl>(F; A, i, v) theF-Lie superalgebra{ = R or C) gl & gl defined by
the parameter valuea (i, v), and we have the following statement ($8p.

Theorem 1.1. The Lie superalgebras glo(F; A, i, v) and glo(F; A/, ', V') are isomorphic if
and only if there is a Lie algebra automorphism T  glo — glp and an F-linear isomorphism

S : glo — glp satisfying

[T(x). SO = S(x, ) and @' (S(x), S()) = T(P(x, y)).
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for any x and y in the Lie algebra gly. This is the case if and only if there are nonzero
constants a, b and c in the ground field F, such that,

)\‘/Z)\.i /_,l,/:'ui ])/:vi
ab?’ abc’ 2’

It follows that either, the three parametersu andv are equal to zero, or exactly two
of them are zero, or exactly one is zero, or none of them is zero. That is how the eight
isomorphism classes ovér arise. In the real case, one further sees that the produlct
is equal toav times a positive constant. Therefore, the sign of this product must remain
constant, thus giving 10 real isomorphism classes. Concrete representatives for the different
classes can be given. We shall agree on choosing the parameter representatives in such a
way that, when different from zera,= 2, u = 2 andv = +1.

Let us now denote by GI(F; A, u, v) the Lie supergroup whose underlying Lie group
is GL, and whose Lie superalgebragis (F; A, 1, v). The supergroup composition law will
be obtained from first principles using the ODE theory in supermanifolds develof@ld in
and following Lie’s original techniques as described above.

Thus, we solve first the problem of giving a faithful representation of the Lie superal-
gebraglx(F; A, u, v) inside the Lie superalgebra of supervector fields on some appropriate
supermanifold. This is done in Secti@Then we find in SectioB the integral flows of
the image generators of the representation. The integral flows describe a local action of
GL2(FF; A, i, v) on the supermanifold thataturally recovers the ordinary (and therefore,
globally defined) linear action of GlonF2,

It is perhaps worth investing a little effort in elucidating the precise meaning of the
last assertion. We shall follow the basic references on the subject, and understand that
a smooth supermanifold structure supported over a given smooth manifaddsheaf
Ay of associative superalgebras satisfying some specific properties — and one usually
refers to the supermanifold\f, Ays) (see eithel4,5], or [11] for details). We would
like to focus the reader’s attention into one of such defining properties of the structure
sheafA,; namely, that there is a natural sheaf epimorphidgm — C3; onto the sheaf
of smooth functions of. This epimorphism provides a natural forgetful functor from
the category of supermanifolds into the category of smooth manifolds that recovers, for
each object, the underlying smooth manifold over which the ‘super’ structure gheaf
is defined. In particular, the natural supermanifolds to consider for faithful representations
of glo(F; A, 1, v) into Lie superalgebras of vector fields, are those hawRgas their
underlying manifold. The reason is that if all our constructions are going to be natural, they
would have to behave and transform properly under the natural sheaflmap C5;. We
would therefore expect the Lie supergroup action ob@®L 2, i, v) on a supermanifold
based oveF?, to project onto the ordinary linear action of ganF2. What we have found,
however, is that all but two isomorphism classes of the Lie superalgebras we obtained
can be represented as supervector fields on th){@mensional supermanifold®? in
such a way that we can recover ffidinear GLyo-action onF2. The classes corresponding
to[A#£0,u=0,v=0]and to h =0, u =0, v # 0] have to be represented as super-
vector fields inF33, and the interpretation of the G(F; A, u, v) action is more subtle
(see SectioR).
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Once we reach the point of identifying the multiplication lagt, ) - (g, ) and give
a formula for it as in(1.1), we must verify that the Lie superalgebra of left-invariant su-
pervector fields on GA(F; A, u, v) is actually isomorphic to the abstract Lie superalgebra
alo(FF; A, u, v) we started with. In order to do this we provide an appropriate commutative
diagram of supermanifold morphisms capable of stating the left-invariance property. This
is a common resource in supermanifold theory: since supermanifold morphisms are not
determined by their values on the points of the underlying manifolds involved%$ge
one must be careful — while remaining strict within the category — each time one needs to
leave an argument fixed in a two-argument morphism. An example of the way around this
technical issue was given by the ‘evaluation map’ introducef@jinn order to deal with
the uniqueness of the integral flows of supervector fields. We mention in passing that with
a more cautious definition of the category of differentiable supermanifolds, one is able to
observe in their morphisms a much more familiar behavior. We refer the reafet, tp.
138for a complete discussion of this point, and we take the opportunity to thank the referee
for bringing this reference and issue to our attention.

At this point, the classical Lie’s theorems find a concrete verification for the Lie super-
groups GL(IF; A, «, v). Other aspects of Lie’s theory and some applications can be observed
for our particular family of examples by looking at their compact real forms. In order to
approach this problem we first consider the real Lie superalgebfasu, v) — whose un-
derlying supervector spaceiis @ uy — so as to have the even copy:wef generated over
the real field bywo = il, w3 =iH, w2 = E — F andw; = i(E + F), as usual. We leP
be as before, so that the symmetric bilinear equivariant éhap, x u, — up that gives
the Lie bracket of any pair of odd elements @&, w) = [P(z), P(w)] is

@(wo, wo) = iAwo, @(wo, w3z) = inws, & (w3, wz) = 2ivwo,
D (wo, w2) = inwz, P (w3, wp) =0, D (w2, wp) = 2ivwo,
D(wo, wi) = inws, P(ws, wy) =0, P(w2, w1) =0,

®(wy, wi) = 2ivwg.

Therefore,A, © and v have to be restricted, from taking arbitrary complex values in
gl2(C; A, u, v), to take only purely imaginary values an(, u, v). The maximal toral
subalgebra ofix(A, u, v) is generated bwo, wz, P(wo) and P(wz). We can find the inte-

gral flows of the appropriate supervector fields which are images of these generators and
also find the composition law for the maximal tofD&, ., v) C Ua(r, i, v).

We must mention that we have succeeded in finding out completely general composition
laws (i.e., depending on arbitrary values of the parameterg,(v)) for four of the eight
isomorphism classes of the Lie supergroups(@L A, 1, v). Namely, those having = 0.

We have been able to give an explicit composition law for a specific representative of the class
havingiuv #£ 0; namely, for Glo(F; 2, 2, 1) which, as a matter fact, turned out to be a pretty
simple one. General composition laws for those@L A, u, v) havingv # 0, have proved

to be difficult to handle. We have, nevertheless succeeded in finding out completely general
composition laws for all the maximal tofi?(x, , v) (i.e., regardless of the parameter
values).
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The maximal tori arising from the different isomorphism classes of the unitary super-
groups brings to the foreground the general problem of classifying all the real Lie supergroup
structures that can be defined over the taPés= S* x S, whose ‘odd sector’ carries the
adjoint representation ab = Lie(T2). This problem falls into the general spirit of what
has been done i8], and can be solved by using the same methods; i.e., by classifying first
the Lie superalgebra structures @i t; associated to the adjoint representation. Stace
is Abelian, the Jacobi identities for the various combinations of homogeneous elements are
all trivial and, therefore, there are no conditions imposed on the symmetric bilinear map
Dt xtr = to.

Onceabasis dp is given (and the basis of the odd direct summand is the same but with the
understanding that its parity has been reversed), the problem of classifying those symmetric
bilinear maps? : t; x t — t2 that yield isomorphic Lie superalgebras Bre to, comes
down to the problem of classifying paiml( 62) of real symmetric bilinear forms under the
action of GLx(R) x GL2(R) given by

(T, S) - (6%, 6%) = (T11S - 61 + T12S - 0%, T21S - 61 + T228 - 67),

whereT andS belong to GL(R), S - ¢/ = (S~1)'¢/(S~1) and the indicated matrix entries are
referred to the chosen basis. It is proved that there are seven different orbits for this action
(only five if one would pose the same problem over the complex field) and it is shown
that there is a surjection from the equivalence classes of tori we have found for the various
superunitary groups, onto the equivalence classes of Lie superalgebras obtained this way.

2. Representations of gl(IF; A, u, v) by means of supervector fields on
supermanifolds

We shall adhere ourselves to the standard references for the basic definitions of Lie
superalgebras and their representations (@:¢4,9), and smooth supermanifolds (e.g.
[4,5]). We refer the reader there for the basic definitions and standard conventions.

The aim of this section is to find faithful representations of the Lie superalgebras
glo(F; A, u, v) realized as supervector fields on appropriate supermanifolds.

Let xo, x1, x2, andxz be thegl,-basis matrices

10 1 0 0 1 00
I = . H= , E= , andF = )
0 1 0 -1 00 10

respectively. Ley; = P(x;) (i =0, 1, 2, 3) and letgly & glo be generated by the's in the
first direct summand, and the's in the second. Think oP as built up from the identity
map of the underlying vector spaces, so that

0 Id
P= :
(o o)
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and define the parityx;| of the x;'s to be 0mod(2), while the parityy;| of the y;'s is
1 mod(2).

Let us assume thaty ® W1 is a finite-dimensiona¥,-graded vector space, and look
at EndW = (EndW)o @ (EndW); with is usualZ,-grading and Lie superalgebra structure
(cf. [9]). Let,

xi—> X; = <A(Xi) 0 ) and yi—=> Y= ( 0 B(yi)> (21)
0 D(x) Cvi) O

be a Lie superalgebra homomorphism, so thdtk;) € End(Wp), D(x;) € End(Wq),
B(y;) € Hom(W1, Wp), and C(y;) € Hom(Wp, W1). In particular, A : gl — End(Wp),
and D : gl, — End(W,) are ordinary Lie-algebra representations. Now, {lef} (a =

., dim Wp), and{f,} (u = 1,...,dim W1) be some given bases 8fy, and Wy, re-
spectively. The matrices associatedAfx;), B(y;), C(y;), and D(x;) allow us to define
even andodd global derivations -X;, andY;, respectively — of the structure sheaf of the
(dim Wo, dim Wy)-dimensional affine supermanifoldvp, iy, ® A(W7)) with (global)
coordinategz?, ¢*}, (|z%| = 0, and|¢#| = 1), by means of the assignments,

xi—=> X = Z A(xz)ahz + Z D(xt);w;

and

yit> Y= Z C(y,),w{“ + Z (yz)avZ

The global coordinateg?} and{¢*} are simply given by the dual bases{tg} and{ .},
with the underlying field being trivially graded. Straightforward computations show that,

(X5 Xj] = Y (AGAG) — AGDAG s + S (D)D)
W,V

a,b
- D(xj)D(xi))Wgﬂ%,
[Xi, ¥l = (D(x)C(y)) — c<y,)A(xl))ub<:“ s+ Z(A(x,)B(y,)

b,u

a0
_B(yj)D(xi))avZ 37{‘)7

[V, Y1 = > (BONC(K)) + BOACOGD a5 + Z(C(yz)B(y;)

a,b
u 0
+ C(yj)B(yi))le 87{”
Since the corresponden¢2.1) is a Lie superalgebra homomorphism, it follows that the
correspondence; — X;, y; — Y;, also defines a Lie superalgebra homomorphism into
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the Lie superalgebra Dély ® A(WY) of graded derivations of the corresponding affine
supermanifold.

Since we want to find faithful representations of the Lie superalgeiséB; A, w, v)
realized as supervector fields on supermanifolds over which we can also recover
the well-known Gla(F)-action on a 2-dimensional vector spa&®, it is natural
to look first at faithful representations of the for2.1) in Wo @ W1 = F2 @ F2.

In doing this we have found faithful representations only for some isomorphism
classes of the Lie superalgebrggz(F; A, u,v). For some other classes it has
been necessary to takd&p @ W1 = F3 @ F2. Our results are given in the following
lemma.

Lemma 2.1.

(1) Let the ground field be R. Lie superalgebras in the equivalence classes of
w>0 u#0, w<0 u#0, iw<0 u=0 vuz#0 A=0,
Ae#£0 v=0, pu#0, A=v=0, A=pu=v=0

admit a matrix representation in the supervector space R? & R? of the following form:

X[|X|0X0 Y[|Y|10dY
eng - 9 0 X 9 6527 - 'y eY 0 9

leg =1 (° ¢
€ N = 4, 5
g2 kI 0

where ) = 2gk, u = eg + dk and v = ed. The real Lie superalgebras lying in the
equivalence class of Av > 0 and u = 0 admit a similar matrix representation, but in
the supervector space C? @ C2.

(2) Let the ground field be C. Lie superalgebras in the equivalence classes of

MWH#0, u#0, Aw#0, u=0 vu#0 A=0 Auz#0 v=0,
nw#0, A=v=0, A=pu=v=0

admit a matrix representation of the type above in the supervector space C? @ C2.

In either case, their explicit realizations in terms of supervector fields in the super-
manifold R22 or C22 with the global coordinates (2L, 22, L, 2} described above are
given by

0 5 0 1 0 5 0
St =+t =t —,
oL T a2 3 act £ ac2

2 0 19 o9

5
Xp=0 2% .
L=l T e A T

Xo =2z

a ) a a a
X3=2"5 +3 Yo=k(é“11+§2> +g(zl+z2>,
Z 0z Z
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d d d d

Y — 19 2%\ 422 2% ),

1=¢ (;‘ 71 3 8z2> + <Z act ¢ a2
1.9
ac?’
(3) Let the ground field F be either R or C. Lie superalgebras in the equivalence class of
v # Owith u = A = O can be faithfully represented in terms of supervector fields in the
supermanifold F313 with coordinates {z°, 21, 22; (0, c1, t2} given by the same expres-
sions for X (k=0,1,2,3)and Y; (¢ = 1, 2, 3) in (1) or (2) above (corresponding to

the parameter values d = 1 and e = v), together with,

ad
Y2 =€§1@ +dZ

(4) Let the ground field F be either R or C. Lie superalgebras in the equivalence class
of & #£ 0 with u = v = 0 can be faithfully represented in terms of supervector fields
in the supermanifold F33 with coordinates {°, 21, 22, (0, c1, t2} given by the same
expressions for X (k =1,2,3)and Y, (¢ = 1, 2, 3)in (1) or (2) above (corresponding
to the parameter values d = 1 and e = 0), together with,

d d
o090 008
0= %50 +e a0
and
0 A 0
yo 00 Ao d
0= T 2% 30

Proof. We first consideiy = V1 = F2 and a 3-dimensional representation
A = pap.o : gla — EndF3

depending on the parameters , ¢) € F3, where

a c¢cb—a) O 0 ¢ O
Pabax0)=10 b 0. pabylx)=(0 1 0|,

0 0 b 0 0 -1

0 0 ¢ 0 0O
Pabx2) =10 0 11,  paselxs)=|0 0 0

0 0O 010

Similarly, we consider

D= pp ol — EndF3.
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From the conditions that the odd module is equal to the adjoint representation, it is easy to
check that

B(y;) = dp(a’b’c)(yi) and C(y;) = eP(a’,h’,c/)(Yi), i=1,23,
whereas

f cg—df 0O h ck—ch O

B(yo)=1 0 g o[, Cho)=|0 k 0

0 0 g 0 0 k

Therefore, the equations that have to be satisfied for these matrices to define arepresentation
of glo(F; A, u, v) are

2fh = ra = Ad, 2gk = Ab = AV, w=eg+dk
and
va =vd =0, vb =vb = ed.
We can now proceed to see how the concrete representatives giVeranem 1.Xkan be

realized via this family of representations. The equations that have to be solved are posed
as follows:

2gk d

MW#0, u#0, w=eg+dk, a=d = fh =0, b:b’:izi;
A

v

2gk  ed

MWw=#£0, n=0, 0=eg+dk, a=d = fh=0, b:b’:Tz—;

d
Vu£0 A=0, p=ecg+dk, a=d=fm=0  b=b="22,
V

gk =0; Ae#0, v=0, u=eg-+dk, a:a’:iﬁ,
b:b’:#, ed=0;, v£0, pu=1=0, 0= eg+dk
a=d = fh =0, b:b’:#:%; A#£0, u=v=0,
0=eg +dk, a:a’:z%, b:b’:%, ed =0;

nw#0, A=v=0, u=-eg+dk, fh =0, gk =0, ed = 0;
A=u=v=0, O0=eg+ dk, fh=0, gk =0, ed =0.

A word must be said about the classiaf> 0 andu = 0 over the reals. It is a straightfor-
ward matter to see that the equations to be solved require imaginary numbers. That means
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that the Lie superalgebras coming from that class need to be represented on a complex
supermanifold, which nevertheless may be regarded as a real supermanifold with twice as
many even and odd dimensiond]

3. The associated Lie supergroups GL,(F; A, u, v)

We now proceed to find the integral flows of each of the represented supervector fields
using the theory and techniques introduce@]nWe shall start with those supervector fields
X; andY; fromLemma 2.1hat can be realized in the,(2)-dimensional supermanifol&%/2.
Thus, letly, : RY! x F22 — 722 pe the integral flow of theven supervector fieldk; that
represents;. According to[6] (see Proposition 3.2 therein), the algebra morphigm
C®(F?) ® A((F?)*) — C®(R x F?) ® A((R @ F?)*) that solves the ODE posed by the
vector fieldX; is explicitly given by ExpfX;) = 1dceo(m2) + 1X + %X,» oX;+---, where
t € R is theeven parameter resulting from the integration process of the ODE. We shall
distinguish among the integration parametettsat result from the ODE’s posed by each
vector field, by writingl;: = Exp(; X;),t; € R (i =0, 1, 2, 3).

By explicitly computing the effect of Exp(X;) on the coordinates!, z2, ¢1, 2, we find
that,

1 gozl 2 ezt
2 2 2 1.2
7° > €0z “ ey
F;ko = Exp(oXo) : s gorl F;l = Exp(1X1) : s el
€-2 — e{0§-2 §-2 — e—llgz
zl > zl zl = zl + t3z2
2 2 1 2 2
e 725+ 1z “>z
' = Exp2X>) : , I'* = Exp(3X3) :
oS P(2X2) s s P(3X3) (s (Lt a2
2 2+ 1t 2 g2

Itis easily seen that these transformations correspond precisely with what one would obtain
under the identifications,

, §2<—>

S O O -
= O O O

by acting on the indicated 4 1 ‘unit columns’ with each of the 4 4 matrices Exp{X;)
(1 =0,1, 2, 3) that are obtained whek; gets identified with the &« 4 matrix associated
to x; via the representatio(®.1) explicitly described inLemma 2.1 We thus set up the
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Correspondences,
@ 0 0 0
. @ 0 0 ¢ 0 o0
<> <> =
©7 g 0 & 0 0 e ) MO
0 0 0 &

€1 0 0 0

oo | © el 0 0 e<etl O):m(tl'xl)
L 0 0 €& 0 0 en T
0 0 0 en
1 » 0 O
se, |0 100 (_)(1 tz):m(tg'xz)
2 0 0 1un 0 1 e
0 0 01
1000
It < 3 100 <—><1 0>=m(t3'x3).
x3 0010 3 1 ’
0 01 1

We can now compose any two morphisms in some prescribed order in order to see what
the effect of the composition is, and to identify the final result withrule to compose the
groupeven coordinates tg, t1, t2 andts. That is,

m(t;; x;) - m(l};xj') {must correspond to the composition ofF;’; = Exp(; X;)
and Fjj = Exp(t;X )
in some appropriate order. By computing directly with the integral flo{ys= Exp(; X:),

where theX; are taken as the even supervector fielddi @mma 2.1 we see that, the
appropriate order is

m(t;; xi) - m(t}; ;) < EXpEX:) 0 EXp(X )

because it is in this, and only this way, that the composition law for the paramgters
expressed in matrix form as above, actually corresponds to the usual rule for matrix multi-
plication.

More generally, we may perform a change of parameters and transferfmiz, 2, t3)
into a new set of parametegs= («, B, y, 8) in such way that if

EXp(toXo) o EXp(t1X1) o EXp(t2X2) o EXp(taX3) = Iy
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then,
2 azl 4 22
22— Bzt 4 822
g9 1 1 2
& e alt+ ¢
&2 > Bt +8¢2
That s,

a = (L4 tpt3) €011 B =t ot y=13€d° and §=¢0",
Therefore, from
Exp(pXo) o EXp(ry X1) o EXp(t;X2) o EXp(t3X3) = Iy

anng*,, = Fg”i o Fg*, one concludes that

R o B o[ P ISR da+py odB+ps

B\ o) BTNy s) T T\vatey yptes)
Remark. What we have accomplished by proceeding this way is to actually recover the
(local) Lie group multiplication law between any two generators in the identity component.
Note thatthis procedure only yieldemltiplication table for the group generators. However,
this table has been obtained from the actual composition of integral flows, by recording the
overall effect on the local coordinates. Therefore, the multiplication law obtained this way
is associative. Finally, by going into the group ring associated to this multiplication law,
and writing down the general 2 2 matrix in the usual form (in terms of new coordinate
parameters), one recovers (locally) the usual law for matrix multiplication as the associated
group operation. Now, the question of whether the matrix composition law we obtained
is globally defined or not on the whole underlying groupGls purely topological. It
only depends on what happens at the level of the Lie (sub)algebra onéniggiaize or
exponentiate up to a local group, and the actual group one wants to get at. In particular, what
we have already done for the even generators clearly recovers the ordinary multiplication
law of GL,, which we already know is globally defined. The point is that the introduction of
the odd generators of the Lie superalgebra does not alter this fact. This has been discussed
and elucidated in Theorem 6 and Corollary 94t

Even though this remark is very well understood in the classical Lie theory, we now
want to see how the quoted results frpfhget realized when we include the contributions
coming from the integral flows of the odd vector fields representing the odd Lie algebra
generatorsyg, y1, y2 andys. As mentioned before, the techniques introducefbjncan
be readily applied and in this case, the integral fiow: R x F22 — F22 depends on
an odd parameter;, as (cf. Lemma 3.3 if6]) I';; = Exp(w;Y:) = id + 7;¥;. We may then
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immediately compute its effect on the coordinatesc?, 1, 2, and obtain
2t 2t 4 krolt
22 > 22 + ktol?
¢t ¢+ grozt
&% > ¢+ groz?

1—';0 = Exp(roY0) :

2 et

22> 22 — ety
Ao 4 dnd

%> (2 —duz?

Iy, = Exp(miY1)

s 2t

22> 22 temt
it gt
{2 — {2 + d7t

Iy, = Exp(r2Y?)

2t 2l 4 erse?

Z2 = Zz
¢t b+ drsZ?

S

Iy, = EXp(tsYs)

In order to find the multiplication law for the supergroup in terms of its own local coordinates
(actually, the integration parameterandz;), we choose a definite sequence for the integral
flows: we shall write

. N * * * *
v(g; 10, T1, T2, 13) =Tgoly olf ol ol

and, from

1 /"

w(g"; 1y, 1, 15, 13) = ¥(g'; 10, T1, Tp, T3) © ¥(g; 0, T1, T2, T3), (3.1)
we shall use this equation to find the Lie supergroup multiplication law and cast it in the
form

(g”ﬂ T// = (g/7 T/) : (g7 T) (32)

as in(1.1). For the sake of illustration, let us first compute the composition law for the
integral flows depending on the odd generators. We get

2L > Exp@aY2)(z! + et3c?)
22 > ExXp(r2Y2)(z?)
¢t > Exp(raY2)(ct + drsz?)
2 > Exp(r2Y2)(¢%)

Exp(r2Y2) o Exp(raYs) :
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We shall do this carefully only once so that the reader can see what is involved: us-
ing the fact that that Exp$Y2) = id + 12Y> and the fact that» is an odd derivation,
we get
Exp(2Y2)(z! + etst?) = 2t + etst? + 12¥2 (¢* + eat?)

= 2+ etat® + 1Y (21) + 12Y2 (et3t?)

= 71 + e13g? — eraYa(¢%13)

= 7' + et3¢? — era(V2(¢%)13 — ¢?Y2(13))

=71+ et3§2 — erzdzltg =1+ erg{z — edtztgzl.
Note that we have used the fact thap(rz) =0. The final result shows that
Exp(r2Y2)(et3c?) = etz Exp(r2Y2)(¢?) as it should be, since for each fixed value of the
odd sectiornry, Exp(r2Y2) must be an algebra isomorphism and, therefore, the constants —

even the odd constants likg — must be preserved by it. At the light of this, it is very easy
to prove that

2L (1 — edrota)z! + etar?
22> 22 et
b (1— edrota)ct + draz?

22 %+ drozt.

Exp(r2Y2) o Exp(r3Ys) :

Itis a straightforward computation to show that in writirgz and¢ as a shorthand notation
for ¥(g; o0, 71, 72, 73),

Zl ;1
~(2)me(0)

respectively,
VYz=Az+ C; and ¥ = Bz+ D¢ (3.3)

whereA and D are invertible matrices with even entries, wher@aand C are matrices
with odd entries; actually, the explicit values for these matrices are

A ((1 — egtot1)(1 — edrot3) —e(gto + dtl)‘Ez)
=8

—e(gTo — dt1)73 1+ egrona

B o [ 80+ d)(1—edrots) d(1—egTom)ra
-8 d(1+ egrot1)t3 gro —dr1 '

C— (kto + et1)(1 — edt213) e(1 — kdtpT1)T2
—8 e(1+ kdrot1)T3 ktg — et1 ’
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D (1 — dktot1)(1 — edtot3) —d(kto + e11)T2
- —d(kto — et1)13 1+ dktot1 ’

As we mentioned before, we shall deduce the multiplication law f(8rt) and, using
similar expressions g8.3)for ¥’ and¥”, we check tha¢3.1)implies

A"=A'A-BC, B =AB+BD, C('=CA+DC,
D' =-C'B+D'D. (3.4)

Remark. This matrix product is given ifil0] and is the one which corresponds to the
composition law for two endomorphism on the graded vector space of dimension (

Let us consider = 0 (e.g., choosing = 0). Then(3.4) implies that
g’ =g'g + krog'(g7pl + d7)g, 70 = 10 + 0,

v =1+ g g — dkro(g '), (3.5)

wherel stands for the % 2 identity matrix,

and similar expressions far andz”. This yields the product in the corresponding super-
group in the schematic forifl.1) where,

A\ (vt Vs Y11+ y22 Y11+ y22 N
V0=<H«—2)<112 2 > T4p | = ) Ade by,

n=-n (P72 02 36)

where

(To + 171 2 )
y = :
73 -7
Itis a straightforward matter to check that the associativity law holds true for this multipli-
cation (although this was something we already knew by first principles). Notelthgt (

is the supergroup’s identity element, whérés the 2x 2 zero matrix. A straightforward
computation shows that the inverse element gor/, which we shall write asg( )1, is
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given by

_ _ Y11+ v22 _ _ Y11+ V22 _1\?
e *t= (g Yhu (2> yg t —gyg Hu (2> (gyg l) )

The case withy = 0 given by (4) ofLemma 2.1can be computed as follows: first, from
Fg*/, = Fg’i o I’y one concludes that

€ 0 0
g |0 o B,
0 y ¢
e 00 €e 0
g |0 a B|l=2g"< | 0 da+py dB+p868|,
0 y ¢ 0 Yya+d8y yB+486
where

(j ?) e Sly.

ande = detg. We then write¥ (g; 1o, 11, T2, 73) = Fg* o F;,"O o Fy* o 1“;,"2 o I'* as before,

where Iy is the integral flow of the odd vector field representing the odd Lie algebra
generatory;. If

20 0
z= |zt | andc=| ¢t |,
2 2

then the analogue @8.3)implies that

A
Ztg O 0 O
Aebee B:g<20 r>’ C:g<0 0)’

with T as above and the 2x 2 zero matrix. Finally, the analogue (¥.4)yields,

1

A _
€' =¢e (1— 21’61’0) , a’=aa, =13+t 1T =t+a "7a, (3.7

where

(%)
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is an element of Sp.and similar expressions fa’ anda’. Note that this is again of the
form (1.1) with,

with
Yo = 2 and y1=0 (3.8)

The identity element is

10 00

0 1/°\0 0 '
wherel and0 are the 2x 2 identity and zero matrices, respectively. Similarly, the inverse
element of ¢, y) is given by

1 el o —10 0
e (3 205 2

Remark. A word must be said about the Lie supergroups based o #&kociated to

the adjoint representation, and having: 0. It turns out that the general formula for the
corresponding multiplication law depending on arbitrary parameter values aofandv

is awkward and not particularly illuminating. However, the generic Lie supergroup having
Aunv # 0 is isomorphic to one having a particularly simple multiplication map; namely,
GL2(FF; 2, 2, 1). This will be worked out in full in the next section (s€keorem 4.).

4. Abstract form for the multiplication morphisms and commutative-diagram
characterization of left-invariant supervector fields

We want to determine the left-invariant supervector fields for each multiplication law
we have found. In order to do that, we first have to know what conditions must such
supervector fields satisfy in a coordinate-free manner, and encapsulate that information
inside some appropriate commutative diagram. According to the Lie supergroups theory,
every Lie supergroup(, Ag) comes equipped with a special morphism that plays the role
oftheidentity elemert : (G, Ag) — (G, Ag)suchthatn o (id, €) = id = m o (e, id) (see
[1]).

Let (G, Ag) be a Lie supergroup and l&t be a supervector field in®, Ag), i.e.,

X € Dery,(G). DefineX asthe unique elementin Dgr, (G x G)that satisfies the condi-

tionsf(p’if = Oand)A(pgf = p5Xf,foreveryf e Ag,wherep; : (G, Ag) x (G, Ag) —
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(G, Ag) stands for the appropriate projections onto ithefactor. Define the map® :

(G, Ag) = (G, Ag) x (G, Ag) by @ p* = id* ande@’ p% = &*. So,X is a left-invariant
1 2

vector field if the diagram

(p1,m)* X
Acxa Acxa Acxa

AGXG(phm)*-AGXG o Aa @.1)

commutes, i.e., @ o X o (p1, m)* = ¢@" o (p1, m)* o X. We mention in passing that an
alternative approach to the definition of left-invariant supervector fields can be accomplished
via the use of appropriate functors as has been done by Varadargjdn.in

The morphismn associated to the multiplication la8.5) has the following effect on
the local coordinates:

2

M\ [ pidi1t pi6e2) [ piéin+ prb2e
sy = Y piapio + (= 5 ) (P ) (2
k=1
2 i1+ ke
X Y pixiphxa + 1 (222> > pixipiErepsxe,
k=1 k=1

2
we o we s P5&11 + piE2e
m*§j = pokij + Z Pouik pr&kepoXej — I 5

k=1

2 2

X Z pouikPi€repaxej |
k=1

where x;; andg;; are the projection maps defined by(g, v) = g;; andg;;(g, y) = y;; and

X22
—X21 X11

12) fori, j e {1, 2).

(uij) = (x11x22 — x12x21) <

It also is easy to see that'x;; = §;;, ¢*&; =0, and, &*f = F(1), for every f e
AGLy(Cin i, v=0), Wherel is the 2x 2 identity matrix, andf + ¥ stands for the forget-
ful functor Ag,(c:s., u=v=0) = CGL2

Note that if the local expression of a supervector fi¢id written as

2
]
Amn + B,
Z 8xmn " On 0Emn

m,n=1
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the local expression foX is,

2
X= 2 pidm T | P2Bm G

A straightforward computation frorf#.1) shows thak is a left-invariant supervector field
for the Lie supergroup structure given(i.5)if and only if,

2 ~ ~
~ B11(1) + By(1
Ajj = ZXikAkj(ﬂ) + 1 (11()222()) Xik&kj
k=1

A\ [ Bu1(1) + Box(1) E11+ &2
(g, (g,

. I < B11(1) + Boo(1
Bij = Bj(1) + > &aAy(1) — Au(D)ex; — 1 (11()—;22()) Eikkrj
k=1

and therefore, we can writé = -2 1 A pg(1)X pg + Bpg(1)Y g, where
2
a a 0
Xpg =) Xp7— +&p— — gk
pq kZ::l ? kg T

2 2
0 ) A §11+ 822 9
Y, — rq E o . § L&
P B8y T2 <(2 M) ( 2 ) SN pat xmé@) dxij

i j=1

2 9
-1 Z Eikékj@
i j k=1 K

Moreover,
[Xpg» Xrs] = 8rgXps — 8psXrg  @ANA  [X g, Yis] = 8¢ ps — S ps¥rg-

Thus, putting
x0 = X11+ X22, x1 = X11— X2, x2 = X192, x3 = X201,
yo = Y11+ Y2, y1=Y11— Y2, y2="Y12 y3 = Y21,

we recover the Lie superalgebrgis(F; A, ., v = 0) admitting a faithful representation in
22 according td_emma 2.1

Similarly, we may now compute, the left-invariant supervector fields for the Lie su-
pergroups whose multiplication law {8.7). One may compute:* from (3.7), and write
X=3, Amnﬁ + an%% as before. A straightforward computation shows i
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a left-invariant supervector field if and only if

X = Aoo(1)Xoo + A;;(1)X,; + Boo(1)Yoo + Bi;(1)Yi;,

where
2
0 d d
Xo00 = x007—, =) X +é&i— —§&
dxo Y kgl Yoy Ok o
Yoo = —2 — X ookon =’ yo_ 0
00 = s 2 X00 ooax i e

Finally, itis also a straightforward matter to verify that the Lie superalgebra equivalence class
corresponding toA # 0, u = 0, v = 0] (i.e. cases in (4) ofemma 2.} can be faithfully
realized.

Our next result deals with the multiplication law for the Lie supergroup (@2, 2, 1)
for which all the Lie supergroups haviigwv # 0 are isomorphic to.

Theorem 4.1. Let C be the ground field, y11, Y12, y21 and y22 be odd elements and let
GL2(C; 2, 2, 1) be the group of 2 x 2 matrices with entries in A[y11, Y12, Y21, Y22]—the
exterior algebra generated by y11, V12, Y21, y22- Let g + v be an element in GL2(C; 2, 2, 1),
and let x;j and &;j be the projection maps defined by x;;(g + y) = gij and &;;(g + v) = vij.
Define a multiplication law in GLo(C; 2, 2, 1) by

2
m*(xy) = Y pili) paee) + (1) pi(Ea) p3(Ers).

k=1

2
m* (&) =Y (1) piin) p(Er) + piEi) Pa(xiy)-
k=1

The left-invariant supervector fields associated to this multiplication are

2

Xpg = Zka ™ + Exp 8; Ypg = kzzzl(—l)kxkpa;kq + (—1)k+l§kpzbiq
satisfying
[Xpg> Xrsl = 8 X ps — 8psXrgs [Xpg: Yrs] = 8rq¥ps — Sps¥rg,
[Ypg: Yrs] = —=8rg X ps — 8ps Xrg
and, by setting
xo = —X11— X22, x1 = —X11+ Xo2, x2 = —X12, x3 = —Xo1,

yo= Y11+ Y2, y1= Yu—"Yo, 2= Y12 y3= Yo,

we recover the Lie superalgebra associated to the parameters A = u = 2and v = 1.
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Proof. It is a straightforward matter to check that the given multiplication morphism is
associative. The identity morphism id is given by

id* Xij = Xjj and * Sij = Eijv
whereas the inversion morphisuis given by

o*(xij + &) = vij — ((VE)Y)i; + (¥8)%Y)ij — ((¥8)3)ij + ((¥&)*y)ij.
where

X22 —X12

Y = (i) = (x11x22 — x12%21) "+ ( ) and & = (&)

—X21 X111

Using the same techniques as above, We provesthgt= §;;, £*§;; = 0,e* f = f()and
actually, ifX = Zm w1 Amn5o— 3xmn + Byn 57— 35 is a supervector field, thefis a left-invariant
supervector field if

2
X = Z AN Xij + Bi(1)Yi,
i,j=1

where

2 3 3 ;
Xij = ZinaTk +§ki§kjv Yij = (-1) (Z( 1)k+l§1 +( 1 xki— % >

k=1

where (1) appearing inv;; can be included irff,-j. We have therefore obtained a faithful
representation for the equivalence class 2, u =2,v=1. O

Remark. The multiplication law given in this proposition was taken friitf)]. It has been
shown there that the special form of this matrix product, actually corresponds to the com-
position law for two endomorphisms on the graded vector space of dimensigh(Eze

also other references by the same auth¢t@j). Note that the supergroup defined by this
multiplication law has sometimes appeared in the literature under the gé#e

~ The multiplication law given inTheorem 4.1is generic in the following sense: the set
C3 = (C — {0}) x (C — {0}) x (C — {0}) is an open set 0of®. According toTheorem 1.1
the Lie superalgebra generated by one element (v) of this open set is isomorphic to
the Lie superalgebra represented by the selectibes2, ' = 2 andv' = 1 and then, the
multiplication law of the Lie supergroup associate to the parametersv is isomorphic
to the one stated ifheorem 4.1
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5. Compact real forms

Let us consider the real Lie superalgebnaé., u, v) with underlying Lie algebrau,
that arise after changing the basisga(C; A, u, v) by wo =il, w3 =iH, wp = E — F
andwy = i(E + F), as usual. By letting® as before, a change of parity map, we have that
the symmetric bilinear equivariant mdp: uz x uz — uy that gives the Lie bracket for any
pair of odd elements, where(z, w) = [ P(z), P(w)], is

@(wo, wo) = iAwo, D(wo, w3) = inws, D(w3, w3) = 2ivwo,

D(wo, w2) = inws, @(w3, wp) =0, D(w2, wz) = 2ivw,

@ (wo, w1) = ipws, &(w3, w1) = 0, (w2, w1) = 0,

@ (w1, wi) = 2ivwg.
Then, in order to have the compact real form for,GL, « andv have to be restricted so
as to be purely imaginary.

As in Section2, we have faithful representations for all these Lie superalgebras in

supervector fields of the supermanifold? and F3/3: one only needs to note that the
generators are now; (with |Wy| = 0) and Z; (with |Z;| = 1), whereW; = iX; and

Zy =Yy fork € {0, 1, 3} whereasW, = X, andZ, = Y. So, proceeding as in Secti8n
we verify that if Iy = Exp(toWo) o Exp(taW3) o EXp(t2W2) o Exp(r1W1), we obtain

2 ozl + yzz

. ) 2?2 Bt 4822
g’ ;1 — Olé'l—i— )/é'z
12t + 82,

where

a = (costy costy + isinty sing) l0t73),
B = (isinty costy + costy sinty) €0+73),
y = (— cost1 Sint + i sin 1 costy) €073),
8 = (COSt1 COSto — i sinty sinty) €0=13),
We therefore see that, up t§%es = @ andy = —E. In other words, the underlying Lie
group isUs, as expected. On the other hand,
2t 2l 4 kot
22 > 22 4 iktot?
gl = {1 + igrozl ’
;2 = €2 + igrozz

Iz, = Exp(roZo) :
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2t 7l fierget
22> 72 —ietsl?
¢t ¢+ ideagt

2 > 2 —idvaz?

Iy, =Exp(sZs)

Z1 — Z1 _ 6“172(2

P24 erz§1
At —dr?’

%> 2+ drpzt

I, = Exp(r2Z2) :

el ienn?

22 22 tieryt
e 4 idnz?

2 2 +idnzt

Iy, = Exp(r1Z1) :

and, from ¥(g, to.71, 72, 3) := Iy o EXp(toZo) o EXp(r3Z3) o EXp(r2Z2) o EXp(r1Z1),
we already know that

¥z =Az+ C; and Y¥¢ = Bz+ D¢,

where we write?, z and¢ as a shorthand notation as in Sectto@nce more, the cases when
v = 0 are simple to compute: settiag= 0 we deduce fronf3.4)the following expression
for the productg’, iz, it) - (g, ito, iT):
/ A, /- / . I . . . —1: 7 . —1: 7.\2
gg— E'fo'fog g+ pitoglit'g, itg+ito, it +g iT'g — pitg(g™ iT'g)” ).
(5.1)

where

i~ it + 17 iT3 iT1+ 12
o 3 17T T2 .
T=1. " . andir = | , .
-1y  —iTg ity —12 —it

Simple computations show that left-invariant supervector fields associated to this mul-
tiplication law are easily found as in Sectidrfor the equivalence class of [, v = 0]
represented 22,

For the case # 0, u = 0, v = 0 arising from the class represented® as stated in
(4) of Lemma 2.1 we obtain the following multiplication law for the

. y) = € 0 itg O and @) — e 0 it O
8:7)=\lo 2/ \ 0o i Y=o a)' \o ir
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elements:
e (11— Lithitg 0 ith +itg 0
(g/v ]/,) : (g’ )/) = ( 270 ) , s 0 . 1 P
0 a'a 0 iT+a "it'a
(5.2)
where

) i it + 17 ) iT3 ity + 12
ir=(., 2%, "t ?)andi=|. _ :
IT1 — 75 —lIt3 1Ty — 12 —l73

Once more, simple computations shows that the left-invariant supervector fields associ-
ated to this multiplication morphism (see SectB)rbrings us back to the Lie superalgebra
we started with in the equivalence class ot 0, u = 0, v = 0].

6. Maximal torus and supertori associated to the adjoint representation

From our results in Sectioghwe know that
@(wo, wo) = iAwo, @(wo, wa) = inws, D (w3, wa) = 2ivwg

and we have realizations in supervector fieldRi#2 andR 33 supermanifolds given by
the appropriate restrictions. We now want to compute a general composition law in terms
of the arbitrary parameter values, [, v].

Proposition 6.1. Lie superalgebras in the equivalence classes [A, u, v] admit faithful rep-
resentations in terms of supervector fields in the supermanifold R?? with local coordinates
{z4, 2% ¢1, ¢} given by

(19 i) i) i)
W0=|(z1+z2+;1+;2 )

ozt 072 act a2
d ad ad ad
we=i(t L 2% a% 2973
3 <Z oL C 22 +e ot ac2
ad

(¢5a+75
. ad d . il il
domie( ) (2 2

where A = 2gk, u = eg + dk and v = ed.
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The integral flows for these supervector fields can be computed as before and it is not
difficult to see that the multiplication law for the elemengs (z(, i75) and g, ito, ir3) is

(g’g { (ﬂ - 2I‘[6I‘L’0) (1 — vithits) + MIT6I13} JTg+iTo, it + Ir3> . (6.1)

This multiplication law exhibits the, «, v parameters in general. The left-invariant super-
vector fields can be computed as in Secdland it is a straightforward matter to prove that
they bring us back to the (2)-dimensional toral superalgebras we started with.

There is a related problem to understand within the spirit that has guided us throughout
this work: namelyzo classify all Lie superalgebras whose underlying 2-dimensional Lie
algebra is Abelian under the assumption that the action of the even Lie algebra into the odd
module is given via the adjoint representation. These Lie superalgebras are classified by
symmetric bilinear map® : g1 x g1 — go With no restrictions, since the Jacobi identities
are trivially satisfied.

Let go = Spamp{w1, wz} be the Abelian 2-dimensional Lie algebra and fgt=
{Pw1, Pwz} be thegp-module defined by the adjoint representation. Then

O(Pwj, Pwj) = Gi.l/wl + Qéwz

defines a Lie superalgebra structure for arbitrary paramd}énsR. A different symmetric
bilinear map®’ : g) x g; — gy would yield a different set of parameter%)fj. The Lie
superalgebras generateddsyand ¢')* will be isomorphicif and only ifthere is a Lie algebra
isomorphisnT : go — g of the Abelian Lie algebra (actually, any linear isomorphiBra
GLowilldoit) and alinearisomorphist$i : g1 — g7 suchthat’(S(x), S(y)) = T(2(x, y))
for anyx, y € g1. This condition can be written in terms of matrices as

SYO)LS = T116% + Tiob?, SYO)%S = To16% + Too?. (6.2)
Type ot 62
' (5 %) (%)
z (5 ¢) (5 %)
: (5 9) (5 %)
: (5 %) (5 9)
; (5 %) (5 %)
6 (5 2) (3 3)
7 2 &
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Type TR
1 [0,0,0]
2 [0,0,1],[1,0,0]
3 [1,0,1]

4 [1,1,1]
5
6
7

[1,0,—1],[0,1,0]
[1,1,-1]
[0,1,1],[1,1,0]

Therefore, we can approach the corresponding classification problem, whose solution
is stated in the following proposition. Its corollary, on the other hand, shows what the
relationship is between the maximal tori found in the last section and the supertori given by
the classification problem just posed.

Proposition 6.2. The group GL2(R) x GL2(R) acts on the left of Symh(R) x Symp(R) via
(T, S) - (6%, 6%) = (T11S - 6* + T12S - 6%, To1S - 6 + T35S - 6°),

where Symy(R) is the set of symmetric 2 x 2 matrices over R and S -6 = S19(S™1)! is
the left action of GL2(R) on Symy(R) that results from Eq. (6.2)above. This action defines
seven different orbits whose representatives 6 and 62 are listed in the following table:

Corollary 6.1. There is a surjection from the set of maximal tori in Proposition 6.1, onto
the set of tori obtained from the action just defined.

Proof of corollary. For real cases i, u andv, we know that

A 0 0
91=< ) and92=< M).
0 v uw 0

We can see these cases in terms of the above Type as follows:

Proof of proposition. Let us explain what the philosophy of the proof is. By means of the
action @1, 6%) — ((S~Hets—1, (s~1)925-1), we try first to see under what conditions

can both § 1151 and ~1)'92s~1 be brought to a diagonal form. Once they are
both diagonal, we can further act with an appropriate group elefienGL>(R) so as

to simplify eachd’ = T1(S~ 1)1~ + T;2(S1)'625~1 (i = 1, 2) as much as possible.
There are some cases in which it is impossible to simultaneously sad#qts—1 and

(s~ H625-1 in diagonal form. These cases are then treated separately. At the end, one
only needs to check that with the chosen representatives one really reaches any pair of
symmetric matrices under the given &R) x GL»(RR)-action and that the representatives
really belong to different orbits. I

There are a few simple cases where one immediately knows thatddaiind6?, can
be simultaneously diagonalized. Say, if from the out#kts proportional t9?, then both
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can be diagonalized at once with the sasne GL»(R). If this is the case (sa§® = af?,
with a # 0), several subcases have to be considered: Namely, éftiepositive definite;
or 91 is negative definite; of* is nondegenerate but nondefinite;@rhas rank-one with
a positive eigenvalue; a* has rank-one with a negative eigenvaluepbiis identically
zero.

In all these cases, by choosing an approprifite GL2(R) one can easily see that
if the eigenvalues ob! either have equal signs, or one of them is zero, thka-
T11(S~ D011 + Tio(S~ 116251 can be chosen so as to be either the identity matrix,
or the diagonal matrix with diagonal entries @) if 61 was rank-one, or diagonal entries
(0, 0) if #1 was identically zero. In any case, the choicelafan also be adjusted so as to
haved? = To1(S~1)101S~1 + Toa(S~1)'925 1 identically zero. This accounts for the first
three types in the statement of the proposition, plus Type 5.

There are other less obvious cases where one can simultaneously diagdnatidé?:
namely, we use the well-known result that this is the case, provided one of the two bilinear
forms — sayp! — is invertible and the product¥)~162 is diagonalizable (see for example
[R. Horn, C. Johnson, Matrix Analysis, pp. 228-234]).

So, if6* andé? are not proportional to each other aiidss positive definite, then an ap-
propriate choice o will bring (S~1)615~1 into diagonal form with diagonal entries, (1).
Whence, the identity matrix. On the other hand, regardless of what frH)625—1 might
have achieved with this choice 8fit is still a symmetric matrix and hence diagonalizable.
Actually, by means of a rotation

S cosy  sin®
~\ —sin® cosy |’

which is an element of the isotropy group &t #)'91s—! = diag(1 1), we can bring
(s~ 1?51 into diagonal form which, under the assumption thatand 62 were not
proportional at the outset, have different diagonal entries. Therefore, the theorem we
have just quoted applles and we can see that the new diagonal entries of the matrices
0 = Ti(S~ 10151 + To(S~ 19251 (i = 1, 2) can be chosen so that the productrof
with the matrixM whose columns are the diagonal entriesl{lof (S~1)'61s~1 and @, d)
of (s71)t92s~1, is equal to the identity matrix. Whence, the representative pair for this
orbit is that listed under Type 4 in the statement. Besides, it is easy to see that the same
argument applies #! was negative definite, since the isotropy group is still the same in this
case.

The case that remains to be analyzed is that wieda nondegenerate, but nondefinite
and#? was not proportional té*. With an appropriateS € GL»(R) we may assume that
(s~ Htets—1is diagonal with diagonal entries,(21). The isotropy group of this element
is formed by the matrices of the Lorentz group and, by choosing

G_ coshw —sinhw
~ \ —=sinhw coshw |’
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it is easy to see thas(1)'92s— will be diagonalizable by means of such a Lorentz trans-
formation if and only if tanh @ = -22, where we originally had

are’

a b
sThte2s—t = :
(579 b e

This will obviously be the case if and only if the absolute valu%%éj is strictly less than
1. But if this condition is fulfilled, then & can be chosen as in the previous paragraph and
therefore fall into Type 4.

Problems in the Lorentz-transformation argument arise when the absolute vg@&e’s)f
either strictly bigger than 1, or exactly equal to 1. In the first case we have a typical situation
of two symmetric matrices that cannot be simultaneously diagonalized, but still have the
chance of bringing the pais¢1)i61s—1 and (§—1)!925~ 1 into the representatives given in
Type 6 of the statement. The condition that is definitely different, on the other hand, is that
when 2 is equal to either-1 or to—1. In this case,{~1)'0*s~* and (=1)'#25~2 can
only be brought into the representatives given in Type 7 of the statement.
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