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a Facultad de Matemáticas, Universidad Autónoma de Yucatán, Mérida, Yuc., Mexico

b CIMAT, Apdo. Postal, 402, C.P. 36000 Guanajuato, Gto., Mexico

Received 22 June 2004; received in revised form 16 June 2005; accepted 22 June 2005
Available online 10 August 2005

Abstract

The algebraic classification of Lie superalgebras based ongl2 whose odd module isgl2 itself
under the adjoint representation, together with the existence and uniqueness theorem for ODE’s in
supermanifolds, are hereby used as in Lie’s theory to produce nonisomorphic Lie supergroups, all
of which are supported over the same underlying Lie group GL2, and whose Lie superalgebras of
left-invariant supervector fields are isomorphic to those given by the algebraic classification. Their
compact real forms are also studied so as to produce nonisomorphic Lie supergroups supported over
the unitary groupU2, and their corresponding maximal tori are described.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

The main purpose of this work is to describe the Lie supergroup structure of those real
and complex Lie supergroups having GL2 as their underlying Lie group and having a Lie
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superalgebra of the formg = g0 ⊕ g1, with g0 = gl2 = g1, where the action of the evengl2
into the oddgl2 is given by the adjoint representation (for the basic definitions and main re-
sults on Lie superalgebras we follow the standard references:[3,4,9]). It has been proved in
[8] that there are 10 (resp., 8) different isomorphism classes of real (resp., complex) Lie su-
peralgebras satisfying these constraints, and it is through each one of them that the different
Lie supergroup structures over GL2 are obtained. In particular, 10 different Lie supergroups
based overU2 are obtained under analogous constraints for their Lie superalgebras.

One physical motivation for understanding precisely these Lie supergroup structures
comes from the fact that spacetime is conveniently identified – locally, at least – with the
Lie algebra of the unitary groupU2. Therefore,U2 has naturally associated to it, 10 dif-
ferent possibilities for building up (4, 4)-dimensional models for superspacetimes. Another
example of theoretical interest is the Lie superalgebra described by Witten in[12], which
can be embedded into one of the nontrivial (4, 4)-dimensional superspacetime models. The
associated supergroups will therefore act on their corresponding Lie superalgebras by su-
persymmetry transformations; thus, under concrete realizations of these Lie supergroups,
new light is shed into such transformations.

Now, the problem of obtaining explicitly a Lie supergroup structure over a given Lie
groupG0 from its Lie superalgebrag = g0 ⊕ g1, g0 = Lie(G0), is subtle. One way of doing
it is through an algebraic approach using Hopf algebras and smashed products as in[4].
Results obtained this way, however, are not particularly illuminating nor appealing in specific
examples, and physical applications call for a somewhat easier to handle machinery and
closer to what one is used to from Lie’s theory; namely, giving first a faithful representation
of the Lie algebra into the Lie algebra of vector fields on some manifold, and obtaining
the local coordinate version of the group multiplication law through composition of their
integral flows depending on the integration parameters. As far as we know, no detailed
and self-consistent account has been given from first principles on how to obtain a Lie
supergroup structure in this way.

Now, the main tool in obtaining a Lie groupG0 out of its Lie algebrag0 in C∞ geometry
is the existence and uniqueness theorem for ODE’s. The problem of putting Lie’s theory to
work in supermanifolds is that the important results on integral flows of supervector fields
and possible supergroup actions defined by them are not just straightforward extensions of
their counterparts in smooth manifolds. In fact, it is taken for granted that the integral flow
of a smooth vector field on a smooth manifold defines a local action ofR whereas a similar
assertion for supermanifolds is much more subtle and elaborate (see[6]).

Besides, we have chosen to follow the approach we have just described, not only to show
that Lie’s theory works via integral flows etc., but because the realizations of the supergroups
and their actions bring us back to a conceptually simpler way of thinking of the supergroups
based on GL2; namely, as ‘spaces whose elements are’ 2× 2 matrices satisfying some
invertibility condition and having a ‘multiplication law’ that gives them a specific group
structure. In more detail, we aim to describe the multiplication law in terms of pairs of
matrices (g, γ) havingg ∈ GL2 (this is the invertibility condition), andγ a 2× 2 matrix
with entries in the spaceS(E) of sections of the GL2-homogeneous vector bundleE → GL2
with typical fibergl2, associated to the adjoint representation Ad : GL2 → GL(gl2); in other
words, we may writeγ ∈ gl2 ⊗ S(E). Now, our findings show that the multiplication law of
the various supergroups we study here, can be given in terms of these pairs via an expression
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of the form:

(g′, γ ′) · (g, γ) = (g′g(1 + γ0), γ + Ad(g−1)(γ ′ + γ1)), (1.1)

whereγ0 ∈ gl2 ⊗ S(∧0E ⊕ ∧2E ⊕ ∧4E), γ1 ∈ gl2 ⊗ S(∧1E ⊕ ∧3E), and∧E = ⊕ ∧k E

is the exterior algebra bundle ofE; the adjoint action is extended fromE to ∧E in its
algebraically natural manner. It is precisely the functional dependence ofγ0, andγ1 from
the entries (g′, γ ′) and (g, γ) what gives the group structure, and what we aim to determine
for the various Lie supergroups considered in this work (see Eqs.(3.6) and (3.8), together
with Theorem 4.1for supergroups supported over GL2; see also Eqs.(5.1) and (5.2)for
supergroups supported overU2, and(6.1) for their maximal tori).

To give a more precise idea of what is involved in the opening paragraph of this intro-
duction, let us first consider the Lie algebragl2 generated, as usual, by the 2× 2-matrices

I =
(

1 0

0 1

)
, H =

(
1 0

0 −1

)
, E =

(
0 1

0 0

)
andF =

(
0 0

1 0

)
,

which we will denote here byx0, x1, x2 andx3, respectively. In considering the Lie su-
peralgebragl2 ⊕ gl2 we think of theodd generators asP(xi) (i = 0, 1, 2, 3); that is, as
elements in the second direct summandgl2, which are images underP of the even (first
direct summand)generators xi, andP(X) stands forX itself with itsZ2-parity reversed. We
then extend the mapP linearly in such a way thatP ◦ P = Id (see[8]). The fact that the
action of the evengl2 in the oddgl2 is given by the adjoint representation is written in terms
of P (with a slight abuse of notation) asP([xi, xj]) = [xi, P(xj)] = −[P(xj), xi], where
[·, ·] stands for the Lie algebra bracket. To complete the Lie superalgebra description, we
must give a symmetric bilinear mapΦ : gl2 × gl2 → gl2 representing the bracket of any
pair of odd elements. WritingΦ(xi, xj) for the Lie superalgebra bracket of the two odd
elementsP(xi), andP(xj), it is a straightforward matter to check that the Jacobi identities
for the Lie superalgebra imply that (see[8]):

Φ(x0, x0) = λx0, Φ(x0, x1) = µx1, Φ(x1, x1) = 2νx0,

Φ(x0, x2) = µx2, Φ(x1, x2) = 0, Φ(x2, x2) = 0,

Φ(x0, x3) = µx3, Φ(x1, x3) = 0, Φ(x2, x3) = νx0, Φ(x3, x3) = 0

for arbitrary parametersλ, µ andν in the ground field. A different symmetric bilinear map
Φ′ : gl2 × gl2 → gl2 would yield a different set of parameters; sayλ′,µ′ andν′, respectively.
Let us denote bygl2(F; λ, µ, ν) theF-Lie superalgebra (F = R orC) gl2 ⊕ gl2 defined by
the parameter values (λ, µ, ν), and we have the following statement (see[8]).

Theorem 1.1. The Lie superalgebras gl2(F; λ, µ, ν) and gl2(F; λ′, µ′, ν′) are isomorphic if
and only if there is a Lie algebra automorphism T : gl2 → gl2 and anF-linear isomorphism
S : gl2 → gl2 satisfying

[T (x), S(y)] = S([x, y]) and Φ′(S(x), S(y)) = T (Φ(x, y)),
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for any x and y in the Lie algebra gl2. This is the case if and only if there are nonzero
constants a, b and c in the ground field F, such that,

λ′ = λ
1

ab2 , µ′ = µ
1

abc
, ν′ = ν

a

c2 .

It follows that either, the three parametersλ, µ andν are equal to zero, or exactly two
of them are zero, or exactly one is zero, or none of them is zero. That is how the eight
isomorphism classes overC arise. In the real case, one further sees that the productλ′ν′
is equal toλν times a positive constant. Therefore, the sign of this product must remain
constant, thus giving 10 real isomorphism classes. Concrete representatives for the different
classes can be given. We shall agree on choosing the parameter representatives in such a
way that, when different from zero,λ = 2, µ = 2 andν = ±1.

Let us now denote by GL2(F; λ, µ, ν) the Lie supergroup whose underlying Lie group
is GL2 and whose Lie superalgebra isgl2(F; λ, µ, ν). The supergroup composition law will
be obtained from first principles using the ODE theory in supermanifolds developed in[6]
and following Lie’s original techniques as described above.

Thus, we solve first the problem of giving a faithful representation of the Lie superal-
gebragl2(F; λ, µ, ν) inside the Lie superalgebra of supervector fields on some appropriate
supermanifold. This is done in Section2. Then we find in Section3 the integral flows of
the image generators of the representation. The integral flows describe a local action of
GL2(F; λ, µ, ν) on the supermanifold thatnaturally recovers the ordinary (and therefore,
globally defined) linear action of GL2 onF2.

It is perhaps worth investing a little effort in elucidating the precise meaning of the
last assertion. We shall follow the basic references on the subject, and understand that
a smooth supermanifold structure supported over a given smooth manifoldM is sheaf
AM of associative superalgebras satisfying some specific properties – and one usually
refers to the supermanifold (M,AM) (see either[4,5], or [11] for details). We would
like to focus the reader’s attention into one of such defining properties of the structure
sheafAM ; namely, that there is a natural sheaf epimorphismAM → C∞M onto the sheaf
of smooth functions ofM. This epimorphism provides a natural forgetful functor from
the category of supermanifolds into the category of smooth manifolds that recovers, for
each object, the underlying smooth manifold over which the ‘super’ structure sheafAM

is defined. In particular, the natural supermanifolds to consider for faithful representations
of gl2(F; λ, µ, ν) into Lie superalgebras of vector fields, are those havingF2 as their
underlying manifold. The reason is that if all our constructions are going to be natural, they
would have to behave and transform properly under the natural sheaf mapAM → C∞M . We
would therefore expect the Lie supergroup action of GL2(F; λ, µ, ν) on a supermanifold
based overF2, to project onto the ordinary linear action of GL2 onF2. What we have found,
however, is that all but two isomorphism classes of the Lie superalgebras we obtained
can be represented as supervector fields on the (2, 2)-dimensional supermanifoldF2|2 in
such a way that we can recover theF-linear GL2-action onF2. The classes corresponding
to [λ 
= 0, µ = 0, ν = 0] and to [λ = 0, µ = 0, ν 
= 0] have to be represented as super-
vector fields inF3|3, and the interpretation of the GL2(F; λ, µ, ν) action is more subtle
(see Section2).
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Once we reach the point of identifying the multiplication law (g′, γ ′) · (g, γ) and give
a formula for it as in(1.1), we must verify that the Lie superalgebra of left-invariant su-
pervector fields on GL2(F; λ, µ, ν) is actually isomorphic to the abstract Lie superalgebra
gl2(F; λ, µ, ν) we started with. In order to do this we provide an appropriate commutative
diagram of supermanifold morphisms capable of stating the left-invariance property. This
is a common resource in supermanifold theory: since supermanifold morphisms are not
determined by their values on the points of the underlying manifolds involved (see[5]),
one must be careful – while remaining strict within the category – each time one needs to
leave an argument fixed in a two-argument morphism. An example of the way around this
technical issue was given by the ‘evaluation map’ introduced in[6] in order to deal with
the uniqueness of the integral flows of supervector fields. We mention in passing that with
a more cautious definition of the category of differentiable supermanifolds, one is able to
observe in their morphisms a much more familiar behavior. We refer the reader to[11, p.
138]for a complete discussion of this point, and we take the opportunity to thank the referee
for bringing this reference and issue to our attention.

At this point, the classical Lie’s theorems find a concrete verification for the Lie super-
groups GL2(F; λ, µ, ν). Other aspects of Lie’s theory and some applications can be observed
for our particular family of examples by looking at their compact real forms. In order to
approach this problem we first consider the real Lie superalgebrasu2(λ, µ, ν) – whose un-
derlying supervector space isu2 ⊕ u2 – so as to have the even copy ofu2 generated over
the real field byw0 = iI, w3 = iH , w2 = E − F andw1 = i(E + F ), as usual. We letP
be as before, so that the symmetric bilinear equivariant mapΦ : u2 × u2 → u2 that gives
the Lie bracket of any pair of odd elements viaΦ(z, w) = [P(z), P(w)] is

Φ(w0, w0) = iλw0, Φ(w0, w3) = iµw3, Φ(w3, w3) = 2iνw0,

Φ(w0, w2) = iµw2, Φ(w3, w2) = 0, Φ(w2, w2) = 2iνw0,

Φ(w0, w1) = iµw1, Φ(w3, w1) = 0, Φ(w2, w1) = 0,

Φ(w1, w1) = 2iνw0.

Therefore,λ, µ and ν have to be restricted, from taking arbitrary complex values in
gl2(C; λ, µ, ν), to take only purely imaginary values onu2(λ, µ, ν). The maximal toral
subalgebra ofu2(λ, µ, ν) is generated byw0, w3, P(w0) andP(w3). We can find the inte-
gral flows of the appropriate supervector fields which are images of these generators and
also find the composition law for the maximal torusT2(λ, µ, ν) ⊂ U2(λ, µ, ν).

We must mention that we have succeeded in finding out completely general composition
laws (i.e., depending on arbitrary values of the parameters (λ, µ, ν)) for four of the eight
isomorphism classes of the Lie supergroups GL2(C; λ, µ, ν). Namely, those havingν = 0.
We have been able to give an explicit composition law for a specific representative of the class
havingλµν 
= 0; namely, for GL2(F; 2, 2, 1) which, as a matter fact, turned out to be a pretty
simple one. General composition laws for those GL2(C; λ, µ, ν) havingν 
= 0, have proved
to be difficult to handle. We have, nevertheless succeeded in finding out completely general
composition laws for all the maximal toriT2(λ, µ, ν) (i.e., regardless of the parameter
values).
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The maximal tori arising from the different isomorphism classes of the unitary super-
groups brings to the foreground the general problem of classifying all the real Lie supergroup
structures that can be defined over the torusT2 = S1 × S1, whose ‘odd sector’ carries the
adjoint representation oft2 = Lie(T2). This problem falls into the general spirit of what
has been done in[8], and can be solved by using the same methods; i.e., by classifying first
the Lie superalgebra structures ont2 ⊕ t2 associated to the adjoint representation. Sincet2
is Abelian, the Jacobi identities for the various combinations of homogeneous elements are
all trivial and, therefore, there are no conditions imposed on the symmetric bilinear map
Φ : t2 × t2 → t2.

Once a basis oft2 is given (and the basis of the odd direct summand is the same but with the
understanding that its parity has been reversed), the problem of classifying those symmetric
bilinear mapsΦ : t2 × t2 → t2 that yield isomorphic Lie superalgebras ont2 ⊕ t2 comes
down to the problem of classifying pairs (θ1, θ2) of real symmetric bilinear forms under the
action of GL2(R) × GL2(R) given by

(T, S) · (θ1, θ2) = (T11S · θ1 + T12S · θ2, T21S · θ1 + T22S · θ2),

whereT andS belong to GL2(R),S · θi = (S−1)tθi(S−1) and the indicated matrix entries are
referred to the chosen basis. It is proved that there are seven different orbits for this action
(only five if one would pose the same problem over the complex field) and it is shown
that there is a surjection from the equivalence classes of tori we have found for the various
superunitary groups, onto the equivalence classes of Lie superalgebras obtained this way.

2. Representations of gl2(F; λ, µ, ν) by means of supervector fields on
supermanifolds

We shall adhere ourselves to the standard references for the basic definitions of Lie
superalgebras and their representations (e.g.[2–4,9]), and smooth supermanifolds (e.g.
[4,5]). We refer the reader there for the basic definitions and standard conventions.

The aim of this section is to find faithful representations of the Lie superalgebras
gl2(F; λ, µ, ν) realized as supervector fields on appropriate supermanifolds.

Let x0, x1, x2, andx3 be thegl2-basis matrices

I =
(

1 0

0 1

)
, H =

(
1 0

0 −1

)
, E =

(
0 1

0 0

)
, andF =

(
0 0

1 0

)
,

respectively. Letyi = P(xi) (i = 0, 1, 2, 3) and letgl2 ⊕ gl2 be generated by thexi’s in the
first direct summand, and theyi’s in the second. Think ofP as built up from the identity
map of the underlying vector spaces, so that

P =
(

0 Id

Id 0

)
,
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and define the parity|xi| of the xi’s to be 0 mod(2), while the parity|yi| of the yi’s is
1 mod(2).

Let us assume thatW0 ⊕ W1 is a finite-dimensionalZ2-graded vector space, and look
at EndW = (EndW)0 ⊕ (EndW)1 with is usualZ2-grading and Lie superalgebra structure
(cf. [9]). Let,

xi �→ Xi =
(

A(xi) 0

0 D(xi)

)
and yi �→ Yi =

(
0 B(yi)

C(yi) 0

)
(2.1)

be a Lie superalgebra homomorphism, so thatA(xi) ∈ End(W0), D(xi) ∈ End(W1),
B(yi) ∈ Hom(W1, W0), and C(yi) ∈ Hom(W0, W1). In particular, A : gl2 → End(W0),
and D : gl2 → End(W1) are ordinary Lie-algebra representations. Now, let{ea} (a =
1, . . . , dim W0), and{fµ} (µ = 1, . . . , dim W1) be some given bases ofW0, andW1, re-
spectively. The matrices associated toA(xi), B(yi), C(yi), andD(xi) allow us to define
even andodd global derivations –Xi, andYi, respectively – of the structure sheaf of the
(dim W0, dim W1)-dimensional affine supermanifold (W0, C

∞
W0

⊗ Λ(W∗
1 )) with (global)

coordinates{za, ζµ}, (|za| = 0, and|ζµ| = 1), by means of the assignments,

xi �→ Xi =
∑
a,b

A(xi)abz
a ∂

∂zb
+
∑
µ,ν

D(xi)µνζ
µ ∂

∂ζν
,

and

yi �→ Yi =
∑
µ,b

C(yi)µbζ
µ ∂

∂zb
+
∑
a,ν

B(yi)aνz
a ∂

∂ζν
.

The global coordinates{za} and{ζµ} are simply given by the dual bases to{ea} and{fµ},
with the underlying fieldF being trivially graded. Straightforward computations show that,

[Xi, Xj] =
∑
a,b

(A(xi)A(xj) − A(xj)A(xi))abz
a ∂

∂zb
+
∑
µ,ν

(D(xi)D(xj)

− D(xj)D(xi))µνζ
µ ∂

∂ζν
,

[Xi, Yj] =
∑
b,µ

(D(xi)C(yj) − C(yj)A(xi))µbζ
µ ∂

∂zb
+
∑
a,ν

(A(xi)B(yj)

− B(yj)D(xi))aνz
a ∂

∂ζν
,

[Yi, Yj] =
∑
a,b

(B(yi)C(yj) + B(yj)C(yi))abz
a ∂

∂zb
+
∑
µ,ν

(C(yi)B(yj)

+ C(yj)B(yi))µνζ
µ ∂

∂ζν
.

Since the correspondence(2.1) is a Lie superalgebra homomorphism, it follows that the
correspondencexi �→ Xi, yi �→ Yi, also defines a Lie superalgebra homomorphism into
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the Lie superalgebra DerC∞
W0

⊗ Λ(W∗
1 ) of graded derivations of the corresponding affine

supermanifold.
Since we want to find faithful representations of the Lie superalgebrasgl2(F; λ, µ, ν)

realized as supervector fields on supermanifolds over which we can also recover
the well-known GL2(F)-action on a 2-dimensional vector spaceF2, it is natural
to look first at faithful representations of the form(2.1) in W0 ⊕ W1 = F2 ⊕ F2.
In doing this we have found faithful representations only for some isomorphism
classes of the Lie superalgebrasgl2(F; λ, µ, ν). For some other classes it has
been necessary to takeW0 ⊕ W1 = F3 ⊕ F3. Our results are given in the following
lemma.

Lemma 2.1.

(1) Let the ground field be R. Lie superalgebras in the equivalence classes of

λν > 0, µ 
= 0, λν < 0, µ 
= 0, λν < 0, µ = 0, νµ 
= 0, λ = 0,

λµ 
= 0, ν = 0, µ 
= 0, λ = ν = 0, λ = µ = ν = 0

admit a matrix representation in the supervector space R2 ⊕ R2 of the following form:

X ∈ gl2, |X| = 0,

(
X 0

0 X

)
, Y ∈ sl2, |Y | = 1,

(
0 dY

eY 0

)
,

I ∈ gl2, |I| = 1,

(
0 gI

kI 0

)
,

where λ = 2gk, µ = eg + dk and ν = ed. The real Lie superalgebras lying in the
equivalence class of λν > 0 and µ = 0 admit a similar matrix representation, but in
the supervector space C2 ⊕ C2.

(2) Let the ground field be C. Lie superalgebras in the equivalence classes of

λν 
= 0, µ 
= 0, λν 
= 0, µ = 0, νµ 
= 0, λ = 0, λµ 
= 0, ν = 0,

µ 
= 0, λ = ν = 0, λ = µ = ν = 0

admit a matrix representation of the type above in the supervector space C2 ⊕ C2.
In either case, their explicit realizations in terms of supervector fields in the super-

manifold R2|2 orC2|2 with the global coordinates {z1, z2; ζ1, ζ2} described above are
given by

X0 = z1 ∂

∂z1 + z2 ∂

∂z2 + ζ1 ∂

∂ζ1 + ζ2 ∂

∂ζ2 ,

X1 = z1 ∂

∂z1 − z2 ∂

∂z2 + ζ1 ∂

∂ζ1 − ζ2 ∂

∂ζ2 , X2 = z1 ∂

∂z2 + ζ1 ∂

∂ζ2 ,

X3 = z2 ∂

∂z1 + ζ2 ∂

∂ζ1 , Y0 = k

(
ζ1 ∂

∂z1 + ζ2 ∂

∂z2

)
+ g

(
z1 ∂

∂ζ1 + z2 ∂

∂ζ2

)
,
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Y1 = e

(
ζ1 ∂

∂z1 − ζ2 ∂

∂z2

)
+ d

(
z1 ∂

∂ζ1 − z2 ∂

∂ζ2

)
,

Y2 = eζ1 ∂

∂z2 + dz1 ∂

∂ζ2 , Y3 = eζ2 ∂

∂z1 + dz2 ∂

∂ζ1 .

(3) Let the ground field F be either R or C. Lie superalgebras in the equivalence class of
ν 
= 0 with µ = λ = 0 can be faithfully represented in terms of supervector fields in the
supermanifold F3|3 with coordinates {z0, z1, z2; ζ0, ζ1, ζ2} given by the same expres-
sions for Xk (k = 0, 1, 2, 3) and Y	 (	 = 1, 2, 3) in (1) or (2) above (corresponding to
the parameter values d = 1 and e = ν), together with,

Y0 = z0 ∂

∂ζ0 .

(4) Let the ground field F be either R or C. Lie superalgebras in the equivalence class
of λ 
= 0 with µ = ν = 0 can be faithfully represented in terms of supervector fields
in the supermanifold F3|3 with coordinates {z0, z1, z2; ζ0, ζ1, ζ2} given by the same
expressions for Xk (k = 1, 2, 3) and Y	 (	 = 1, 2, 3) in (1) or (2) above (corresponding
to the parameter values d = 1 and e = 0), together with,

X0 = z0 ∂

∂z0 + ζ0 ∂

∂ζ0

and

Y0 = ζ0 ∂

∂z0 + λ

2
z0 ∂

∂ζ0 .

Proof. We first considerV0 = V1 = F3 and a 3-dimensional representation

A = ρ(a,b,c) : gl2 → EndF3

depending on the parameters (a, b, c) ∈ F3, where

ρ(a,b,c)(x0) =

 a c(b − a) 0

0 b 0

0 0 b

 , ρ(a,b,c)(x1) =

0 c 0

0 1 0

0 0 −1

 ,

ρ(a,b,c)(x2) =

0 0 c

0 0 1

0 0 0

 , ρ(a,b,c)(x3) =

0 0 0

0 0 0

0 1 0

 .

Similarly, we consider

D = ρ(a′,b′,c′) : gl2 → EndF3.
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From the conditions that the odd module is equal to the adjoint representation, it is easy to
check that

B(yi) = dρ(a,b,c)(yi) and C(yi) = eρ(a′,b′,c′)(yi), i = 1, 2, 3,

whereas

B(y0) =

f cg − c′f 0

0 g 0

0 0 g

 , C(y0) =

h c′k − ch 0

0 k 0

0 0 k

 .

Therefore, the equations that have to be satisfied for these matrices to define a representation
of gl2(F; λ, µ, ν) are

2fh = λa = λa′, 2gk = λb = λb′, µ = eg + dk

and

νa = νa′ = 0, νb = νb′ = ed.

We can now proceed to see how the concrete representatives given inTheorem 1.1can be
realized via this family of representations. The equations that have to be solved are posed
as follows:

λν 
= 0, µ 
= 0, µ = eg + dk, a = a′ = fh = 0, b = b′ = 2gk

λ
= ed

ν
;

λν 
= 0, µ = 0, 0 = eg + dk, a = a′ = fh = 0, b = b′ = 2gk

λ
= ed

ν
;

νµ 
= 0, λ = 0, µ = eg + dk, a = a′ = fh = 0, b = b′ = ed

ν
,

gk = 0; λµ 
= 0, ν = 0, µ = eg + dk, a = a′ = 2fh

λ
,

b = b′ = 2gk

λ
, ed = 0; ν 
= 0, µ = λ = 0, 0 = eg + dk,

a = a′ = fh = 0, b = b′ = 2gk

λ
= ed

ν
; λ 
= 0, µ = ν = 0,

0 = eg + dk, a = a′ = 2fh

λ
, b = b′ = 2gk

λ
, ed = 0;

µ 
= 0, λ = ν = 0, µ = eg + dk, fh = 0, gk = 0, ed = 0;

λ = µ = ν = 0, 0 = eg + dk, fh = 0, gk = 0, ed = 0.

A word must be said about the class ofλν > 0 andµ = 0 over the reals. It is a straightfor-
ward matter to see that the equations to be solved require imaginary numbers. That means
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that the Lie superalgebras coming from that class need to be represented on a complex
supermanifold, which nevertheless may be regarded as a real supermanifold with twice as
many even and odd dimensions.�

3. The associated Lie supergroups GL2(F; λ, µ, ν)

We now proceed to find the integral flows of each of the represented supervector fields
using the theory and techniques introduced in[6]. We shall start with those supervector fields
Xi andYi fromLemma 2.1that can be realized in the (2, 2)-dimensional supermanifoldsF2|2.
Thus, letΓxi : R1|1 × F2|2 → F

2|2 be the integral flow of theeven supervector fieldXi that
representsxi. According to[6] (see Proposition 3.2 therein), the algebra morphismΓ ∗

xi
:

C∞(F2) ⊗ Λ((F2)∗) → C∞(R× F2) ⊗ Λ((R⊕ F2)∗) that solves the ODE posed by the

vector fieldXi is explicitly given by Exp(tXi) = IdC∞(F2) + tX + t2

2!Xi ◦ Xi + · · ·, where
t ∈ R is theeven parameter resulting from the integration process of the ODE. We shall
distinguish among the integration parameterst that result from the ODE’s posed by each
vector field, by writingΓ ∗

xi
= Exp(tiXi), ti ∈ R (i = 0, 1, 2, 3).

By explicitly computing the effect of Exp(tiXi) on the coordinatesz1, z2, ζ1, ζ2, we find
that,

Γ ∗
x0

= Exp(t0X0) :


z1 �→ et0z1

z2 �→ et0z2

ζ1 �→ et0ζ1

ζ2 �→ et0ζ2

, Γ ∗
x1

= Exp(t1X1) :


z1 �→ et1z1

z2 �→ e−t1z2

ζ1 �→ et1ζ1

ζ2 �→ e−t1ζ2

,

Γ ∗
x2

= Exp(t2X2) :


z1 �→ z1

z2 �→ z2 + t2z
1

ζ1 �→ ζ1

ζ2 �→ ζ2 + t2ζ
1

, Γ ∗
x3

= Exp(t3X3) :


z1 �→ z1 + t3z

2

z2 �→ z2

ζ1 �→ ζ1 + t3ζ
2

ζ2 �→ ζ2

It is easily seen that these transformations correspond precisely with what one would obtain
under the identifications,

z1 ↔


1

0

0

0

 , z2 ↔


0

1

0

0

 , ζ1 ↔


0

0

1

0

 , ζ2 ↔


0

0

0

1



by acting on the indicated 4× 1 ‘unit columns’ with each of the 4× 4 matrices Exp(tiXi)
(i = 0, 1, 2, 3) that are obtained whenXi gets identified with the 4× 4 matrix associated
to xi via the representation(2.1) explicitly described inLemma 2.1. We thus set up the
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correspondences,

Γ ∗
x0

↔


et0 0 0 0

0 et0 0 0

0 0 et0 0

0 0 0 et0

↔
(

et0 0

0 et0

)
= m(t0; x0),

Γ ∗
x1

↔


et1 0 0 0

0 e−t1 0 0

0 0 et1 0

0 0 0 e−t1

↔
(

et1 0

0 e−t1

)
= m(t1; x1),

Γx2
∗ ↔


1 t2 0 0

0 1 0 0

0 0 1 t2

0 0 0 1

↔
(

1 t2

0 1

)
= m(t2; x2),

Γ ∗
x3

↔


1 0 0 0

t3 1 0 0

0 0 1 0

0 0 t3 1

↔
(

1 0

t3 1

)
= m(t3; x3).

We can now compose any two morphisms in some prescribed order in order to see what
the effect of the composition is, and to identify the final result withthe rule to compose the
groupeven coordinates t0, t1, t2 andt3. That is,

m(ti; xi) ·m(t′j; xj) {must correspond to the composition of} Γ ∗
xi

= Exp(tiXi)

and Γ ∗
xj

= Exp(t′jXj)

in some appropriate order. By computing directly with the integral flowsΓ ∗
xi

= Exp(tiXi),
where theXi are taken as the even supervector fields inLemma 2.1, we see that, the
appropriate order is

m(ti; xi) ·m(t′j; xj) ↔ Exp(tiXi) ◦ Exp(t′jXj)

because it is in this, and only this way, that the composition law for the parametersti,
expressed in matrix form as above, actually corresponds to the usual rule for matrix multi-
plication.

More generally, we may perform a change of parameters and transform t= (t0, t1, t2, t3)
into a new set of parametersg = (α, β, γ, δ) in such way that if

Exp(t0X0) ◦ Exp(t1X1) ◦ Exp(t2X2) ◦ Exp(t3X3) = Γ ∗
g
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then,

Γ ∗
g :


z1 �→ αz1 + γz2

z2 �→ βz1 + δz2

ζ1 �→ αζ1 + γζ2

ζ2 �→ βζ1 + δζ2

That is,

α = (1 + t2t3) et0+t1, β = t2 et0+t1, γ = t3 et0−t1 and δ = et0−t1.

Therefore, from

Exp(t′0X0) ◦ Exp(t′1X1) ◦ Exp(t′2X2) ◦ Exp(t′3X3) = Γ ∗
g′

andΓ ∗
g′′ = Γ ∗

g′ ◦ Γ ∗
g , one concludes that

g′ ↔
(

α′ β′

γ ′ δ′

)
, g ↔

(
α β

γ δ

)
⇒ g′′ ↔

(
α′α + β′γ α′β + β′δ
γ ′α + δ′γ γ ′β + δ′δ

)
.

Remark. What we have accomplished by proceeding this way is to actually recover the
(local) Lie group multiplication law between any two generators in the identity component.
Note that this procedure only yields amultiplication table for the group generators. However,
this table has been obtained from the actual composition of integral flows, by recording the
overall effect on the local coordinates. Therefore, the multiplication law obtained this way
is associative. Finally, by going into the group ring associated to this multiplication law,
and writing down the general 2× 2 matrix in the usual form (in terms of new coordinate
parameters), one recovers (locally) the usual law for matrix multiplication as the associated
group operation. Now, the question of whether the matrix composition law we obtained
is globally defined or not on the whole underlying group GL2, is purely topological. It
only depends on what happens at the level of the Lie (sub)algebra one is tointegrate or
exponentiate up to a local group, and the actual group one wants to get at. In particular, what
we have already done for the even generators clearly recovers the ordinary multiplication
law of GL2, which we already know is globally defined. The point is that the introduction of
the odd generators of the Lie superalgebra does not alter this fact. This has been discussed
and elucidated in Theorem 6 and Corollary 9 of[7].

Even though this remark is very well understood in the classical Lie theory, we now
want to see how the quoted results from[7] get realized when we include the contributions
coming from the integral flows of the odd vector fields representing the odd Lie algebra
generatorsy0, y1, y2 andy3. As mentioned before, the techniques introduced in[6] can
be readily applied and in this case, the integral flowΓyi : R1|1 × F2|2 → F

2|2 depends on
an odd parameterτi, as (cf. Lemma 3.3 in[6]) Γ ∗

yi
= Exp(τiYi) = id + τiYi. We may then
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immediately compute its effect on the coordinatesz1, z2, ζ1, ζ2, and obtain

Γ ∗
y0

= Exp(τ0Y0) :


z1 �→ z1 + kτ0ζ

1

z2 �→ z2 + kτ0ζ
2

ζ1 �→ ζ1 + gτ0z
1

ζ2 �→ ζ2 + gτ0z
2

,

Γ ∗
y1

= Exp(τ1Y1) :


z1 �→ z1 + eτ1ζ

1

z2 �→ z2 − eτ1ζ
2

ζ1 �→ ζ1 + dτ1z
1

ζ2 �→ ζ2 − dτ1z
2

,

Γ ∗
y2

= Exp(τ2Y2) :


z1 �→ z1

z2 �→ z2 + eτ2ζ
1

ζ1 �→ ζ1

ζ2 �→ ζ2 + dτ2z
1

,

Γ ∗
y3

= Exp(τ3Y3) :


z1 �→ z1 + eτ3ζ

2

z2 �→ z2

ζ1 �→ ζ1 + dτ3z
2

ζ2 �→ ζ2

.

In order to find the multiplication law for the supergroup in terms of its own local coordinates
(actually, the integration parametersti andτi), we choose a definite sequence for the integral
flows: we shall write

Ψ (g; τ0, τ1, τ2, τ3) := Γ ∗
g ◦ Γ ∗

y0
◦ Γ ∗

y1
◦ Γ ∗

y2
◦ Γ ∗

y3

and, from

Ψ (g′′; τ′′
0, τ′′

1, τ′′
2, τ′′

3) = Ψ (g′; τ′
0, τ

′
1, τ

′
2, τ

′
3) ◦ Ψ (g; τ0, τ1, τ2, τ3), (3.1)

we shall use this equation to find the Lie supergroup multiplication law and cast it in the
form

(g′′, τ′′) = (g′, τ′) · (g, τ) (3.2)

as in (1.1). For the sake of illustration, let us first compute the composition law for the
integral flows depending on the odd generators. We get

Exp(τ2Y2) ◦ Exp(τ3Y3) :


z1 �→ Exp(τ2Y2)(z1 + eτ3ζ

2)

z2 �→ Exp(τ2Y2)(z2)

ζ1 �→ Exp(τ2Y2)(ζ1 + dτ3z
2)

ζ2 �→ Exp(τ2Y2)(ζ2)
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We shall do this carefully only once so that the reader can see what is involved: us-
ing the fact that that Exp(τ2Y2) = id + τ2Y2 and the fact thatY2 is an odd derivation,
we get

Exp(τ2Y2)(z1 + eτ3ζ
2) = z1 + eτ3ζ

2 + τ2Y2 (z1 + eτ3ζ
2)

= z1 + eτ3ζ
2 + τ2Y2 (z1) + τ2Y2 (eτ3ζ

2)

= z1 + eτ3ζ
2 − eτ2Y2(ζ2τ3)

= z1 + eτ3ζ
2 − eτ2(Y2(ζ2)τ3 − ζ2Y2(τ3))

= z1 + eτ3ζ
2 − eτ2dz1τ3 = z1 + eτ3ζ

2 − edτ2τ3z
1.

Note that we have used the fact thatY2(τ3) = 0. The final result shows that
Exp(τ2Y2)(eτ3ζ

2) = eτ3 Exp(τ2Y2)(ζ2) as it should be, since for each fixed value of the
odd sectionτ2, Exp(τ2Y2) must be an algebra isomorphism and, therefore, the constants –
even the odd constants likeτ3 – must be preserved by it. At the light of this, it is very easy
to prove that

Exp(τ2Y2) ◦ Exp(τ3Y3) :


z1 �→ (1 − edτ2τ3)z1 + eτ3ζ

2

z2 �→ z2 + eτ2ζ
1

ζ1 �→ (1 − edτ2τ3)ζ1 + dτ3z
2

ζ2 �→ ζ2 + dτ2z
1.

It is a straightforward computation to show that in writingΨ , z andζ as a shorthand notation
for Ψ (g; τ0, τ1, τ2, τ3),

z =
(

z1

z2

)
andζ =

(
ζ1

ζ2

)
,

respectively,

Ψz = Az + Cζ and Ψζ = Bz + Dζ (3.3)

whereA andD are invertible matrices with even entries, whereasB andC are matrices
with odd entries; actually, the explicit values for these matrices are

A = g

(
(1 − egτ0τ1)(1 − edτ2τ3) −e(gτ0 + dτ1)τ2

−e(gτ0 − dτ1)τ3 1 + egτ0τ1

)
,

B = g

(
(gτ0 + dτ1)(1 − edτ2τ3) d(1 − egτ0τ1)τ2

d(1 + egτ0τ1)τ3 gτ0 − dτ1

)
,

C = g

(
(kτ0 + eτ1)(1 − edτ2τ3) e(1 − kdτ0τ1)τ2

e(1 + kdτ0τ1)τ3 kτ0 − eτ1

)
,
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D = g

(
(1 − dkτ0τ1)(1 − edτ2τ3) −d(kτ0 + eτ1)τ2

−d(kτ0 − eτ1)τ3 1 + dkτ0τ1

)
.

As we mentioned before, we shall deduce the multiplication law from(3.1) and, using
similar expressions as(3.3) for Ψ ′ andΨ ′′, we check that(3.1) implies

A′′ = A′A − B′C, B′′ = A′B + B′D, C′′ = C′A + D′C,

D′′ = −C′B + D′D. (3.4)

Remark. This matrix product is given in[10] and is the one which corresponds to the
composition law for two endomorphism on the graded vector space of dimension (n, n).

Let us considerν = 0 (e.g., choosinge = 0). Then(3.4) implies that

g′′ = g′g + kτ0g′(gτ′
01 + dτ′)g, τ′′

0 = τ′
0 + τ0,

τ′′ = τ + g−1τ′g − dkτ0(g−1τ′g)2, (3.5)

where1 stands for the 2× 2 identity matrix,

τ =
(

τ1 τ2

τ3 −τ1

)

and similar expressions forτ′ andτ′′. This yields the product in the corresponding super-
group in the schematic form(1.1)where,

γ0 =
(

µ − λ

2

)(
γ ′

11 + γ ′
22

2

)(
γ11 + γ22

2

)
1 + µ

(
γ11 + γ22

2

)
Ad(g−1)γ ′,

γ1 = −µ

(
γ11 + γ22

2

)
(γ ′)2, (3.6)

where

γ =
(

τ0 + τ1 τ2

τ3 τ0 − τ1

)
.

It is a straightforward matter to check that the associativity law holds true for this multipli-
cation (although this was something we already knew by first principles). Note that (1, 0)
is the supergroup’s identity element, where0 is the 2× 2 zero matrix. A straightforward
computation shows that the inverse element for (g, γ), which we shall write as (g, γ)−1, is
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given by

(g, γ)−1 =
(

g−1 + µ

(
γ11 + γ22

2

)
γg−1, −gγg−1+µ

(
γ11 + γ22

2

)(
gγg−1

)2
)

.

The case withν = 0 given by (4) ofLemma 2.1can be computed as follows: first, from
Γ ∗

g′′ = Γ ∗
g′ ◦ Γ ∗

g one concludes that

g′ ↔

 ε′ 0 0

0 α′ β′

0 γ ′ δ′

 ,

g ↔

 ε 0 0

0 α β

0 γ δ

⇒ g′′ ↔

 ε′ε 0

0 α′α + β′γ α′β + β′δ
0 γ ′α + δ′γ γ ′β + δ′δ

 ,

where(
α β

γ δ

)
∈ SL2,

andε = detg. We then writeΨ (g; τ0, τ1, τ2, τ3) := Γ ∗
g ◦ Γ ∗

y0
◦ Γ ∗

y1
◦ Γ ∗

y2
◦ Γ ∗

y3
as before,

whereΓ ∗
yi

is the integral flow of the odd vector field representing the odd Lie algebra
generatoryi. If

z =

 z0

z1

z2

 andζ =

 ζ0

ζ1

ζ2

 ,

then the analogue of(3.3) implies that

A = D = g, B = g

(
λ
2τ0 0

0 τ

)
, C = g

(
τ0 0

0 0

)
,

with τ as above and0 the 2× 2 zero matrix. Finally, the analogue of(3.4)yields,

ε′′ = ε′ε
(

1 − λ

2
τ′

0τ0

)
, a′′ = a′a, τ′′

0 = τ′
0 + τ0, τ′′ = τ + a−1τ′a, (3.7)

where

a =
(

α β

γ δ

)
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is an element of SL2 and similar expressions fora′′ anda′. Note that this is again of the
form (1.1)with,

g =
(

ε 0

0 a

)
andγ =

(
τ0 0

0 τ

)
,

with

γ0 =
−λ

2
τ′

0τ0 0

0 0

 and γ1 = 0 (3.8)

The identity element is((
1 0

0 1

)
,

(
0 0

0 0

))
,

where1 and0 are the 2× 2 identity and zero matrices, respectively. Similarly, the inverse
element of (g, γ) is given by

(g, γ)−1 =
((

ε−1 0

0 a−1

)
,

(
−τ0 0

0 −aτa−1

))
.

Remark. A word must be said about the Lie supergroups based on GL2 associated to
the adjoint representation, and havingν 
= 0. It turns out that the general formula for the
corresponding multiplication law depending on arbitrary parameter values ofλ, µ, andν

is awkward and not particularly illuminating. However, the generic Lie supergroup having
λµν 
= 0 is isomorphic to one having a particularly simple multiplication map; namely,
GL2(F; 2, 2, 1). This will be worked out in full in the next section (seeTheorem 4.1).

4. Abstract form for the multiplication morphisms and commutative-diagram
characterization of left-invariant supervector fields

We want to determine the left-invariant supervector fields for each multiplication law
we have found. In order to do that, we first have to know what conditions must such
supervector fields satisfy in a coordinate-free manner, and encapsulate that information
inside some appropriate commutative diagram. According to the Lie supergroups theory,
every Lie supergroup (G,AG) comes equipped with a special morphism that plays the role
of the identity elementε : (G,AG) → (G,AG) such thatm ◦ (id, ε) = id = m ◦ (ε, id) (see
[1]).

Let (G,AG) be a Lie supergroup and letX be a supervector field in (G,AG), i.e.,
X ∈ DerAG

(G). DefineX̂ as the unique element in DerAG×G
(G × G) that satisfies the condi-

tionsX̂p∗
1f = 0 andX̂p∗

2f = p∗
2Xf , for everyf ∈ AG, wherepi : (G,AG) × (G,AG) →
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(G,AG) stands for the appropriate projections onto theith factor. Define the mapε(2) :
(G,AG) → (G,AG) × (G,AG) byε(2)∗p∗

1 = id∗ andε(2)∗p∗
2 = ε∗. So,X is a left-invariant

vector field if the diagram

(4.1)

commutes, i.e., ifε(2)∗ ◦ X̂ ◦ (p1, m)∗ = ε(2)∗ ◦ (p1, m)∗ ◦ X̂. We mention in passing that an
alternative approach to the definition of left-invariant supervector fields can be accomplished
via the use of appropriate functors as has been done by Varadarajan in[11].

The morphismm associated to the multiplication law(3.5) has the following effect on
the local coordinates:

m∗xij =
2∑

k=1

p∗
1xikp

∗
2xkj +

(
µ − λ

2

)(
p∗

1ξ11 + p∗
1ξ22

2

)(
p∗

2ξ11 + p∗
2ξ22

2

)

×
2∑

k=1

p∗
1xikp

∗
2xkj + µ

(
p∗

2ξ11 + p∗
2ξ22

2

) 2∑
k,	=1

p∗
1xikp

∗
1ξk	p

∗
2x	j,

m∗ξij = p∗
2ξij +

2∑
k,	=1

p∗
2uikp

∗
1ξk	p

∗
2x	j − µ

(
p∗

2ξ11 + p∗
2ξ22

2

)

×
 2∑

k,	=1

p∗
2uikp

∗
1ξk	p

∗
2x	j

2

,

where,xij andξij are the projection maps defined byxij(g, γ) = gij andξij(g, γ) = γij and

(uij) = (x11x22 − x12x21)
−1

(
x22 −x12

−x21 x11

)
for i, j ∈ {1, 2}.

It also is easy to see thatε∗xij = δij, ε∗ξij = 0, and, ε∗f = f̃ (1), for every f ∈
AGL2(C;λ,µ,ν=0), where1 is the 2× 2 identity matrix, andf �→ f̃ stands for the forget-
ful functorAGL2(C;λ,µ=ν=0) → C∞

GL2
.

Note that if the local expression of a supervector fieldX is written as

X =
2∑

m,n=1

Amn

∂

∂xmn

+ Bmn

∂

∂ξmn
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the local expression for̂X is,

X̂ =
2∑

m,n=1

p∗
2Amn

∂

∂p∗
2xmn

+ p∗
2Bmn

∂

∂p∗
2ξmn

.

A straightforward computation from(4.1)shows thatX is a left-invariant supervector field
for the Lie supergroup structure given in(3.5) if and only if,

Aij =
2∑

k=1

xikÃkj(1) + µ

(
B̃11(1) + B̃22(1)

2

)
xikξkj

−
(

µ − λ

2

)(
B̃11(1) + B̃22(1)

2

)
×
(

ξ11 + ξ22

2

)
xij,

Bij = B̃ij(1) +
2∑

k=1

ξikÃkj(1) − Ãik(1)ξkj − µ

(
B̃11(1) + B̃22(1)

2

)
ξikξkj

and therefore, we can writeX =∑2
p,q=1 Ãpq(1)Xpq + B̃pq(1)Ypq, where

Xpq =
2∑

k=1

xkp

∂

∂xkq

+ ξkp

∂

∂ξkq

− ξqk

∂

∂ξpk

,

Ypq = ∂

∂ξpq

+ δpq

2


2∑

i,j=1

((
λ

2
− µ

)(
ξ11 + ξ22

2

)
xij + µ

2∑
k=1

xikξkj

)
∂

∂xij

−µ

2∑
i,j,k=1

ξikξkj

∂

∂ξij

 .

Moreover,

[Xpq, Xrs] = δrqXps − δpsXrq and [Xpq, Yrs] = δrqYps − δpsYrq.

Thus, putting

x0 = X11 + X22, x1 = X11 − X22, x2 = X12, x3 = X21,

y0 = Y11 + Y22, y1 = Y11 − Y22, y2 = Y12 y3 = Y21,

we recover the Lie superalgebrasgl2(F; λ, µ, ν = 0) admitting a faithful representation in
F

2|2 according toLemma 2.1.
Similarly, we may now compute, the left-invariant supervector fields for the Lie su-

pergroups whose multiplication law is(3.7). One may computem∗ from (3.7), and write
X =∑m,n Amn

∂
∂xmn

+ Bmn
∂

∂ξmn
as before. A straightforward computation shows thatX is
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a left-invariant supervector field if and only if

X = Ã00(1)X00 + Ãij(1)Xij + B̃00(1)Y00 + B̃ij(1)Yij,

where

X00 = x00
∂

∂x00
, Xij =

2∑
k=1

xki

∂

∂xkj

+ ξki

∂

∂ξkj

− ξjk

∂

∂ξik

,

Y00 = ∂

∂ξ00
− λ

2
x00ξ00

∂

∂x00
, Yij = ∂

∂ξij

.

Finally, it is also a straightforward matter to verify that the Lie superalgebra equivalence class
corresponding to [λ 
= 0, µ = 0, ν = 0] (i.e. cases in (4) ofLemma 2.1) can be faithfully
realized.

Our next result deals with the multiplication law for the Lie supergroup GL2(F; 2, 2, 1)
for which all the Lie supergroups havingλµν 
= 0 are isomorphic to.

Theorem 4.1. Let C be the ground field, γ11, γ12, γ21 and γ22 be odd elements and let
GL2(C; 2, 2, 1) be the group of 2 × 2 matrices with entries in ∧[γ11, γ12, γ21, γ22]—the
exterior algebra generated by γ11, γ12, γ21, γ22. Let g + γ be an element in GL2(C; 2, 2, 1),
and let xij and ξij be the projection maps defined by xij(g + γ) = gij and ξij(g + γ) = γij.
Define a multiplication law in GL2(C; 2, 2, 1) by

m∗(xij) =
2∑

k=1

p∗
1(xik)p∗

2(xkj) + (−1)i+kp∗
1(ξik)p∗

2(ξkj),

m∗(ξij) =
2∑

k=1

(−1)i+kp∗
1(xik)p∗

2(ξkj) + p∗
1(ξik)p∗

2(xkj).

The left-invariant supervector fields associated to this multiplication are

Xpq =
2∑

k=1

xkp

∂

∂xkq

+ ξkp

∂

∂ξkq

, Ypq =
2∑

k=1

(−1)kxkp

∂

∂ξkq

+ (−1)k+1ξkp

∂

∂xkq

satisfying

[Xpq, Xrs] = δrqXps − δpsXrq, [Xpq, Yrs] = δrqYps − δpsYrq,

[Ypq, Yrs] = −δrqXps − δpsXrq

and, by setting

x0 = −X11 − X22, x1 = −X11 + X22, x2 = −X12, x3 = −X21,

y0 = Y11 + Y22, y1 = Y11 − Y22, y2 = Y12, y3 = Y21,

we recover the Lie superalgebra associated to the parameters λ = µ = 2 and ν = 1.



1020 R. Peniche, O.A. Sánchez-Valenzuela / Journal of Geometry and Physics 56 (2006) 999–1028

Proof. It is a straightforward matter to check that the given multiplication morphism is
associative. The identity morphism id is given by

id∗ xij = xij and id∗ ξij = ξij,

whereas the inversion morphismα is given by

α∗(xij + ξij) = yij − ((yξ)y)ij + ((yξ)2y)ij − ((yξ)3y)ij + ((yξ)4y)ij,

where

y = (yij) = (x11x22 − x12x21)
−1

(
x22 −x12

−x21 x11

)
and ξ = (ξij).

Using the same techniques as above, we prove thatε∗xij = δij, ε∗ξij = 0, ε∗f = f̃ (1) and
actually, ifX =∑2

m,n=1 Amn
∂

∂xmn
+ Bmn

∂
∂ξmn

is a supervector field, thenX is a left-invariant
supervector field if

X =
2∑

i,j=1

Ãij(1)Xij + B̃ij(1)Yij,

where

Xij =
2∑

k=1

xki

∂

∂xkj

+ ξki

∂

∂ξkj

, Yij = (−1)i
(

2∑
k=1

(−1)k+1ξki

∂

∂xkj

+(−1)kxki

∂

∂ξkj

)
,

where (−1)i appearing inYij can be included iñBij. We have therefore obtained a faithful
representation for the equivalence classλ = 2, µ = 2, ν = 1. �

Remark. The multiplication law given in this proposition was taken from[10]. It has been
shown there that the special form of this matrix product, actually corresponds to the com-
position law for two endomorphisms on the graded vector space of dimension (2, 2) (see
also other references by the same author in[10]). Note that the supergroup defined by this
multiplication law has sometimes appeared in the literature under the nameQ(2).

The multiplication law given inTheorem 4.1is generic in the following sense: the set
Ċ

3 = (C− {0}) × (C− {0}) × (C− {0}) is an open set onC3. According toTheorem 1.1,
the Lie superalgebra generated by one element (λ, µ, ν) of this open set is isomorphic to
the Lie superalgebra represented by the selectionsλ′ = 2, µ′ = 2 andν′ = 1 and then, the
multiplication law of the Lie supergroup associate to the parametersλ, µ, ν is isomorphic
to the one stated inTheorem 4.1.



R. Peniche, O.A. Sánchez-Valenzuela / Journal of Geometry and Physics 56 (2006) 999–1028 1021

5. Compact real forms

Let us consider the real Lie superalgebrasu2(λ, µ, ν) with underlying Lie algebrau2,
that arise after changing the basis ingl2(C; λ, µ, ν) by w0 = iI, w3 = iH , w2 = E − F

andw1 = i(E + F ), as usual. By lettingP as before, a change of parity map, we have that
the symmetric bilinear equivariant mapΦ : u2 × u2 → u2 that gives the Lie bracket for any
pair of odd elements, whereΦ(z, w) = [P(z), P(w)], is

Φ(w0, w0) = iλw0, Φ(w0, w3) = iµw3, Φ(w3, w3) = 2iνw0,

Φ(w0, w2) = iµw2, Φ(w3, w2) = 0, Φ(w2, w2) = 2iνw0,

Φ(w0, w1) = iµw1, Φ(w3, w1) = 0, Φ(w2, w1) = 0,

Φ(w1, w1) = 2iνw0.

Then, in order to have the compact real form for GL2, λ, µ andν have to be restricted so
as to be purely imaginary.

As in Section2, we have faithful representations for all these Lie superalgebras in
supervector fields of the supermanifoldsF2|2 andF3|3: one only needs to note that the
generators are nowWk (with |Wk| = 0) andZk (with |Zk| = 1), whereWk = iXk and
Zk = iYk for k ∈ {0, 1, 3} whereasW2 = X2 andZ2 = Y2. So, proceeding as in Section3,
we verify that ifΓ ∗

g = Exp(t0W0) ◦ Exp(t3W3) ◦ Exp(t2W2) ◦ Exp(t1W1), we obtain

Γ ∗
g :


z1 �→ αz1 + γz2

z2 �→ βz1 + δz2

ζ1 �→ αζ1 + γζ2

ζ2 �→ βζ1 + δζ2,

where

α = (cost1 cost2 + i sin t1 sint2) ei(t0+t3),

β = (i sin t1 cost2 + cost1 sint2) ei(t0+t3),

γ = (− cost1 sint2 + i sin t1 cost2) ei(t0−t3),

δ = (cost1 cost2 − i sin t1 sint2) ei(t0−t3).

We therefore see that, up to eit0, δ = ᾱ andγ = −β̄. In other words, the underlying Lie
group isU2, as expected. On the other hand,

Γ ∗
Z0

= Exp(τ0Z0) :


z1 �→ z1 + ikτ0ζ

1

z2 �→ z2 + ikτ0ζ
2

ζ1 �→ ζ1 + igτ0z
1

ζ2 �→ ζ2 + igτ0z
2

,
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Γ ∗
Z3

= Exp(τ3Z3) :


z1 �→ z1 + ieτ3ζ

1

z2 �→ z2 − ieτ3ζ
2

ζ1 �→ ζ1 + idτ3z
1

ζ2 �→ ζ2 − idτ3z
2

,

Γ ∗
Z2

= Exp(τ2Z2) :


z1 �→ z1 − eτ2ζ

2

z2 �→ z2 + eτ2ζ
1

ζ1 �→ ζ1 − dτ2z
2

ζ2 �→ ζ2 + dτ2z
1

,

Γ ∗
Z1

= Exp(τ1Z1) :


z1 �→ z1 + ieτ1ζ

2

z2 �→ z2 + ieτ1ζ
1

ζ1 �→ ζ1 + idτ1z
2

ζ2 �→ ζ2 + idτ1z
1

and, from Ψ (g, τ0.τ1, τ2, τ3) := Γ ∗
g ◦ Exp(τ0Z0) ◦ Exp(τ3Z3) ◦ Exp(τ2Z2) ◦ Exp(τ1Z1),

we already know that

Ψz = Az + Cζ and Ψζ = Bz + Dζ,

where we writeΨ , z andζ as a shorthand notation as in Section3. Once more, the cases when
ν = 0 are simple to compute: settinge = 0 we deduce from(3.4)the following expression
for the product (g′, iτ′

0, iτ′) · (g, iτ0, iτ):(
g′g − λ

2
iτ′

0iτ0g′g + µiτ0g′iτ′g, iτ′
0 + iτ0, iτ + g−1iτ′g − µiτ0(g−1iτ′g)2

)
,

(5.1)

where

iτ′ =
(

iτ′
3 iτ′

1 + τ′
2

iτ′
1 − τ′

2 −iτ′
3

)
and iτ =

(
iτ3 iτ1 + τ2

iτ1 − τ2 −iτ3

)
.

Simple computations show that left-invariant supervector fields associated to this mul-
tiplication law are easily found as in Section4 for the equivalence class of [λ, µ, ν = 0]
represented inF2|2.

For the caseλ 
= 0, µ = 0, ν = 0 arising from the class represented inF3|3 as stated in
(4) of Lemma 2.1, we obtain the following multiplication law for the

(g′, γ ′) =
((

ε′ 0

0 a′

)
,

(
iτ′

0 0

0 iτ′

))
and (g, γ) =

((
ε 0

0 a

)
,

(
iτ0 0

0 iτ

))
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elements:

(g′, γ ′) · (g, γ) =
((

ε′ε
(
1 − λ

2iτ′
0iτ0
)

0

0 a′a

)
,

(
iτ′

0 + iτ0 0

0 iτ + a−1iτ′a

))
,

(5.2)

where

iτ′ =
(

iτ′
3 iτ′

1 + τ′
2

iτ′
1 − τ′

2 −iτ′
3

)
and iτ =

(
iτ3 iτ1 + τ2

iτ1 − τ2 −iτ3

)
.

Once more, simple computations shows that the left-invariant supervector fields associ-
ated to this multiplication morphism (see Section3) brings us back to the Lie superalgebra
we started with in the equivalence class of [λ 
= 0, µ = 0, ν = 0].

6. Maximal torus and supertori associated to the adjoint representation

From our results in Section5 we know that

Φ(w0, w0) = iλw0, Φ(w0, w3) = iµw3, Φ(w3, w3) = 2iνw0

and we have realizations in supervector fields inR 2|2 andR 3|3 supermanifolds given by
the appropriate restrictions. We now want to compute a general composition law in terms
of the arbitrary parameter values [λ, µ, ν].

Proposition 6.1. Lie superalgebras in the equivalence classes [λ, µ, ν] admit faithful rep-
resentations in terms of supervector fields in the supermanifoldR2|2 with local coordinates
{z1, z2; ζ1, ζ2} given by

W0 = i

(
z1 ∂

∂z1 + z2 ∂

∂z2 + ζ1 ∂

∂ζ1 + ζ2 ∂

∂ζ2

)
,

W3 = i

(
z1 ∂

∂z1 − z2 ∂

∂z2 + ζ1 ∂

∂ζ1 − ζ2 ∂

∂ζ2

)
,

Z0 = ik

(
ζ1 ∂

∂z1 + ζ2 ∂

∂z2

)
+ ig

(
z1 ∂

∂ζ1 + z2 ∂

∂ζ2

)
,

Z3 = ie

(
ζ1 ∂

∂z1 − ζ2 ∂

∂z2

)
+ id

(
z1 ∂

∂ζ1 − z2 ∂

∂ζ2

)
,

where λ = 2gk, µ = eg + dk and ν = ed.
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The integral flows for these supervector fields can be computed as before and it is not
difficult to see that the multiplication law for the elements (g′, iτ′

0, iτ′
3) and (g, iτ0, iτ3) is(

g′g
{(

1 − λ

2
iτ′

0iτ0

)
(1 − νiτ′

3iτ3) + µiτ′
0iτ3

}
, iτ′

0 + iτ0, iτ′
3 + iτ3

)
. (6.1)

This multiplication law exhibits theλ, µ, ν parameters in general. The left-invariant super-
vector fields can be computed as in Section4 and it is a straightforward matter to prove that
they bring us back to the (2, 2)-dimensional toral superalgebras we started with.

There is a related problem to understand within the spirit that has guided us throughout
this work: namely,to classify all Lie superalgebras whose underlying 2-dimensional Lie
algebra is Abelian under the assumption that the action of the even Lie algebra into the odd
module is given via the adjoint representation. These Lie superalgebras are classified by
symmetric bilinear mapsΦ : g1 × g1 → g0 with no restrictions, since the Jacobi identities
are trivially satisfied.

Let g0 = SpanR{w1, w2} be the Abelian 2-dimensional Lie algebra and letg1 =
{Pw1, Pw2} be theg0-module defined by the adjoint representation. Then

Φ(Pwj, Pwj) = θ1
ijw1 + θ2

ijw2

defines a Lie superalgebra structure for arbitrary parametersθk
ij inR. A different symmetric

bilinear mapΦ′ : g′1 × g′1 → g′0 would yield a different set of parameters (θ′)kij. The Lie

superalgebras generated byθk and (θ′)k will be isomorphic if and only if there is a Lie algebra
isomorphismT : g0 → g′0 of the Abelian Lie algebra (actually, any linear isomorphismT ∈
GL2 will do it) and a linear isomorphismS : g1 → g′1 such thatΦ′(S(x), S(y)) = T (Φ(x, y))
for anyx, y ∈ g1. This condition can be written in terms of matrices as

St(θ′)1S = T11θ
1 + T12θ

2, St(θ′)2S = T21θ
1 + T22θ

2. (6.2)

Type θ̃1 θ̃2

1

(
0 0
0 0

) (
0 0
0 0

)
2

(
1 0
0 0

) (
0 0
0 0

)
3

(
1 0
0 1

) (
0 0
0 0

)
4

(
1 0
0 0

) (
0 0
0 1

)
5

(
1 0
0 −1

) (
0 0
0 0

)
6

(
1 0
0 −1

) (
0 1
1 0

)
7

(
1 0
0 −1

) (
0 1
1 2

)
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Type [λ, µ, ν]

1 [0, 0, 0]
2 [0, 0, 1], [1, 0, 0]
3 [1, 0, 1]
4 [1, 1, 1]
5 [1, 0,−1], [0, 1, 0]
6 [1, 1,−1]
7 [0, 1, 1], [1, 1, 0]

Therefore, we can approach the corresponding classification problem, whose solution
is stated in the following proposition. Its corollary, on the other hand, shows what the
relationship is between the maximal tori found in the last section and the supertori given by
the classification problem just posed.

Proposition 6.2. The group GL2(R) × GL2(R) acts on the left of Sym2(R) × Sym2(R) via

(T, S) · (θ1, θ2) = (T11S · θ1 + T12S · θ2, T21S · θ1 + T22S · θ2),

where Sym2(R) is the set of symmetric 2 × 2 matrices over R and S · θ = S−1θ(S−1)t is
the left action of GL2(R) on Sym2(R) that results from Eq. (6.2)above. This action defines
seven different orbits whose representatives θ̃1 and θ̃2 are listed in the following table:

Corollary 6.1. There is a surjection from the set of maximal tori in Proposition 6.1, onto
the set of tori obtained from the action just defined.

Proof of corollary. For real cases inλ, µ andν, we know that

θ1 =
(

λ 0

0 ν

)
andθ2 =

(
0 µ

µ 0

)
.

We can see these cases in terms of the above Type as follows:

Proof of proposition. Let us explain what the philosophy of the proof is. By means of the
action (θ1, θ2) �→ ((S−1)tθ1S−1, (S−1)tθ2S−1), we try first to see under what conditions
can both (S−1)tθ1S−1 and (S−1)tθ2S−1 be brought to a diagonal form. Once they are
both diagonal, we can further act with an appropriate group elementT ∈ GL2(R) so as
to simplify eachθ̃i = Ti1(S−1)tθ1S−1 + Ti2(S−1)tθ2S−1 (i = 1, 2) as much as possible.
There are some cases in which it is impossible to simultaneously have (S−1)tθ1S−1 and
(S−1)tθ2S−1 in diagonal form. These cases are then treated separately. At the end, one
only needs to check that with the chosen representatives one really reaches any pair of
symmetric matrices under the given GL2(R) × GL2(R)-action and that the representatives
really belong to different orbits. �

There are a few simple cases where one immediately knows that both,θ1 andθ2, can
be simultaneously diagonalized. Say, if from the outset,θ1 is proportional toθ2, then both
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can be diagonalized at once with the sameS ∈ GL2(R). If this is the case (sayθ2 = aθ1,
with a 
= 0), several subcases have to be considered: Namely, eitherθ1 is positive definite;
or θ1 is negative definite; orθ1 is nondegenerate but nondefinite; orθ1 has rank-one with
a positive eigenvalue; orθ1 has rank-one with a negative eigenvalue; orθ1 is identically
zero.

In all these cases, by choosing an appropriateT ∈ GL2(R) one can easily see that
if the eigenvalues ofθ1 either have equal signs, or one of them is zero, thenθ̃1 =
T11(S−1)tθ1S−1 + T12(S−1)tθ2S−1 can be chosen so as to be either the identity matrix,
or the diagonal matrix with diagonal entries (1, 0) if θ1 was rank-one, or diagonal entries
(0, 0) if θ1 was identically zero. In any case, the choice ofT can also be adjusted so as to
haveθ̃2 = T21(S−1)tθ1S−1 + T22(S−1)tθ2S−1 identically zero. This accounts for the first
three types in the statement of the proposition, plus Type 5.

There are other less obvious cases where one can simultaneously diagonalizeθ1 andθ2:
namely, we use the well-known result that this is the case, provided one of the two bilinear
forms – say,θ1 – is invertible and the product (θ1)−1θ2 is diagonalizable (see for example
[R. Horn, C. Johnson, Matrix Analysis, pp. 228–234]).

So, if θ1 andθ2 are not proportional to each other andθ1 is positive definite, then an ap-
propriate choice ofS will bring (S−1)tθ1S−1 into diagonal form with diagonal entries (1, 1).
Whence, the identity matrix. On the other hand, regardless of what form (S−1)tθ2S−1 might
have achieved with this choice ofS, it is still a symmetric matrix and hence diagonalizable.
Actually, by means of a rotation

S =
(

cosϑ sinϑ

− sinϑ cosϑ

)
,

which is an element of the isotropy group at (S−1)tθ1S−1 = diag(1, 1), we can bring
(S−1)tθ2S−1 into diagonal form which, under the assumption thatθ1 and θ2 were not
proportional at the outset, have different diagonal entries. Therefore, the theorem we
have just quoted applies and we can see that the new diagonal entries of the matrices
θ̃i = Ti1(S−1)tθ1S−1 + Ti2(S−1)tθ2S−1 (i = 1, 2) can be chosen so that the product ofT
with the matrixM whose columns are the diagonal entries (1, 1) of (S−1)tθ1S−1 and (a, d)
of (S−1)tθ2S−1, is equal to the identity matrix. Whence, the representative pair for this
orbit is that listed under Type 4 in the statement. Besides, it is easy to see that the same
argument applies ifθ1 was negative definite, since the isotropy group is still the same in this
case.

The case that remains to be analyzed is that whenθ1 is nondegenerate, but nondefinite
andθ2 was not proportional toθ1. With an appropriateS ∈ GL2(R) we may assume that
(S−1)tθ1S−1 is diagonal with diagonal entries (1, −1). The isotropy group of this element
is formed by the matrices of the Lorentz group and, by choosing

S =
(

coshω − sinhω

− sinhω coshω

)
,
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it is easy to see that (S−1)tθ2S−1 will be diagonalizable by means of such a Lorentz trans-
formation if and only if tanh 2ω = 2b

a+c
, where we originally had

(S−1)tθ2S−1 =
(

a b

b c

)
.

This will obviously be the case if and only if the absolute value of2b
a+c

is strictly less than
1. But if this condition is fulfilled, then aT can be chosen as in the previous paragraph and
therefore fall into Type 4.

Problems in the Lorentz-transformation argument arise when the absolute value of2b
a+c

is
either strictly bigger than 1, or exactly equal to 1. In the first case we have a typical situation
of two symmetric matrices that cannot be simultaneously diagonalized, but still have the
chance of bringing the pair (S−1)tθ1S−1 and (S−1)tθ2S−1 into the representatives given in
Type 6 of the statement. The condition that is definitely different, on the other hand, is that
when 2b

a+c
is equal to either+1 or to−1. In this case, (S−1)tθ1S−1 and (S−1)tθ2S−1 can

only be brought into the representatives given in Type 7 of the statement.
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